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Since the Great Recession of 2007 
and the subsequent financial crisis of 
2008, global financial markets have 
entered into an unchartered territory 

characterized by extreme macroeconomic 
conditions, elevated volatility, heightened cor-
relations across multiple markets, and uncer-
tain monetary and fiscal policy responses. In 
this environment, some of the traditional static 
quantitative equity strategies have struggled, 
in part due to the perverse behavior of their 
quantitative factors.

In a static quantitative model, the factor 
weightings are based on long-term risk-
 return statistics and show little change over 
a short time period. Therefore, while static 
models could ultimately perform well over 
the long term, they are vulnerable to changes 
in market conditions that may have an adverse 
impact on the model or factor performance 
in the short run.

As market volatility persists, static 
models could face performance difficulties. 
In this article, we suggest that investors can 
benefit from changes in market conditions 
by employing factor-timing strategies, trans-
forming market volatility into an additional 
source of excess return. We propose a novel 
factor-timing approach that extends a static 
model framework and illustrates dynamic 
model-weight construction.

The major difference between a tradi-
tional static model and the dynamic factor-

timing model is that the latter’s factor weights 
are conditioned on a set of market variables 
and f luctuate with the values of conditioning 
variables through time. For example, the S&P 
500 implied volatility index (VIX) can be a 
conditioning variable. When the VIX index 
is relatively high, one may take a contrarian 
view and buy stocks with a higher risk pro-
file and short stocks with strong momentum. 
When the VIX index is relatively low, the 
reverse might be desirable. Whether or not 
this strategy is valid depends on the degree 
of the VIX’s inf luence on expected returns 
and variances of momentum, value, or other 
quantitative factors.

The weights of a factor-timing model 
depend on both the conditional expected 
returns and the conditional return covariance, 
given the current conditioning variable read-
ings. As conditioning variables vary over time, 
both conditional factor returns and the con-
ditional covariance matrix change, creating a 
dynamic process of determining optimal model 
weights.

Starting with a given static model, there 
are two additional building blocks required 
for constructing a factor-timing model. The 
first is a set of optimal conditioning variables 
and the second is a process for assigning model 
weights to factors based on the observed values 
of conditioning variables in the optimal set.

In this article, the second step of deter-
mining model weights is similar to the static 
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4   facTor-TiMing Model fall 2012

model framework discussed in Qian et al. [2004], in 
which the conditional expected returns and the condi-
tional covariance are used in lieu of the unconditional 
ones.1 Our main contribution in this article is to propose 
a framework for selecting conditioning variables in the 
first step. We also show how to track improvements in 
the resulting model’s efficacy by deriving useful infor-
mation ratios that demonstrate how a dynamic model 
adds value.

This article differs from the existing literature, as 
we aim to establish a unif ied methodology for con-
structing factor-timing models based on a conditioning 
information set. In contrast, the published literature is 
mainly concerned with employing conditioning vari-
ables to develop dynamic asset allocation strategies.2

OPTIMAL WEIGHTS FACTOR-TIMING 
MODEL WEIGHTS

To derive optimal dynamic factor-timing model 
weights, we extend Qian’s et al. [2004] result by replacing 
the unconditional covariance matrix and the uncondi-
tional expected return vector with their conditional 
counterparts.

Assume R
t+1

 is a N-by-1 vector of random variables 
representing time-series returns of N factors, and V

t
 is 

a K-by-1 vector of random variables representing time-
 series readings of K conditioning variables. (For nota-
tional simplicity, we shall omit time subscripts for R and 
V from now on.) For example, while R contains returns 
to book-to-price and momentum factors, V includes 
VIX and other macroeconomic factors, such as the con-
sumer confidence index. We further assume that both 
R and V follow a multivariate normal distribution, with 
the joint distribution of R and V expressed as

R

V
N

R

V
RR RV

VR VV
































~ ,

Σ Σ
Σ Σ 


(1)

Then, by standard theory of conditional distribu-
tion, the conditional mean and conditional covariance 
of R, given a realization of V denoted by v, can be 
written as

R R Rv

v RR

|

|

= +

= −

∆

Σ Σ Σ∆∆ (2)

where ∆ Σ ΣR v VRV VV= −−1 ( ) is an adjustment to the
return and Σ Σ Σ Σ∆∆ = −

RV VV VR
1  is an adjustment to the 

covariance. Given Equation (2), the conditional optimal 
model weights according to Qian et al. [2004], are 
M R R Rv v v RR| | |

* = = −( ) +( )− −
λ λΣ Σ Σ ∆∆∆

1 1
, in which λ 

is an arbitrary constant. Thus, the differences between 
static and dynamic model weights can be traced to two 
sources: the change in the covariance Σ∆∆ and the change
in the expected return ∆R that depends on realizations 
of conditioning variables relative to their means and is 
normally distributed with zero mean and covariance 
matrix Σ∆∆.

CONDITIONING VARIABLE SELECTION

There is a large body of model selection literature 
that seeks to rank models in the candidate space rela-
tive to one another.3 In this strand of literature, models 
are defined generally to represent their specifications, 
such as the variable selection, parameter estimation, and 
nesting structure. It is well recognized that the suitability 
of candidate models depends on a priori thinking. Given 
that financial markets are too complex to be replicated 
with a fully specified model, one can only hope to find 
a set of good approximating models that shed insights 
into markets’ dynamics and inner workings.

Finding the set of candidate models with a priori 
knowledge is beyond the scope of this article. A suc-
cessful exploration often depends on one’s experience, 
knowledge, and creativity. Nonetheless, when developing 
a set of candidate variables, one should recognize the bal-
ancing act of keeping the set small by focusing on credible 
hypotheses and making it big enough not to omit a suit-
able a priori model. If a model does not make economic 
sense, don’t include it. On the other hand, if one omits a 
potentially suitable variable, it cannot be rediscovered by 
a model selection algorithm. Make every effort to find 
the right balance.

Including more conditioning variables increases 
f itted-model precision and lowers in-sample residual 
variance. Yet, despite the improved data f it, adding 
variables may increase the forecast error’s out-of-sample 
variance and reduce the fitted model’s tractability. This 
article provides a selection mechanism based on Akaike’s 
information criterion to evaluate various factor-timing 
specif ications among a predetermined candidate set 
of variables. For instance, our framework allows us to 
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answer the question, “How many conditioning variables 
should be included from the candidate set?”

AKAIKE’S INFORMATION CRITERION

Since the concept of entropy was first introduced 
in thermodynamics in the 19th century, it was well 
adopted across other disciplines, including information 
theory. In 1951, Kullback and Leibler conceptualized 
a measure of discrepancy between two models. Later, 
Akaike [1973] found a relationship between Kullback-
Leibler’s distance and Fisher’s maximized log-likelihood 
function and proposed a methodology for selecting a 
parsimonious model. Akaike called it an information cri-
terion (AIC)

 AIC L= − +2 2log( ) κ  (3)

where L is the likelihood function for the estimated 
model and κ is the number of parameters. This measure 
places a premium on achieving a given fit with a smaller 
number of parameters per observation. It provides a 
simple way to select a model based on a data set. Spe-
cifically, one should pick a model that yields the smallest 
AIC value. The lower the AIC, the closer the model is 
to the unknown reality that generated the data.

To obtain AIC for a factor-timing model, assume 
T observations in the data sample with the distribution 
specified above. Then, as shown in the appendix

 
AIC T NKv= ⋅ 



 +log |Σ 2

 
(4)

That is, the AIC of a factor-timing model depends 
on the number of observations, T, the determinant of 
the conditional covariance matrix, Σ|v

, the number of 
quantitative factors, N, and conditioning variables, K.

When the number of observations T and the 
number of factors N are given, minimizing AIC means 
minimizing a linear combination of the number of con-
ditional factors K and the logarithm of the determinant 
of the conditional covariance matrix. These two terms 
behave in a conf licted way: The higher the K, the better 
the fit and thus, the lower the determinant. Therefore, 
one cannot simply include many conditional variables, 
as a larger K lowers the determinant but raises the value 
of the second term in Equation (4).

A few interesting properties of AIC can be gleaned 
from of Equation (4). First, if we ignore correlations 
among residual returns and assume they are uncorrelated 
with each other, Σ|v

 is reduced to a diagonal matrix of 
conditional variances of factor returns and Equation (4) 
becomes

AIC T NK T
n

N

n n
n

N

≈ ⋅








 + =


= =
∏log log

1

2

1

2 2Πσ σ



+ 2NK

 (4a)

As a logarithm is a monotonic function, the best 
model with the same number of conditioning variables K 
is the one with the lowest product of residual variances.4

Second, if we allow correlations among conditional 
factor returns and hold the number of conditioning 
variables K constant, the lower the determinant of the 
conditional covariance matrix, |Σ

|v
| and the better the 

model. Since Σ
|v
 is a covariance matrix, it is semi-pos-

itive definite. At the extreme, the determinant is zero, 
AIC becomes infinitely negative, and the model is the 
absolute best.

There are two instances when the determinant can 
be zero. The first and somewhat trivial case is when 
one or more of the residual variances is zero. It means 
one can forecast factor returns with perfect accuracy, 
yielding a risk-free arbitrage. In the second case, Σ

|v
 is 

linearly dependent with a rank less than N. One can 
again create a risk-free strategy by eliminating risk 
through offsetting factor returns.

Obtain one more interesting insight by trans-
forming Equation (4) with eigenvalues. Assume that 
λ

n
 is the nth eigenvalue of the conditional covariance 

matrix, Σ
|v
. Because the determinant of a matrix equals 

the product of its eigenvalues, i.e., Σ|v nn

N
=

=∏ λ
1

, we 
can derive the following

 
AIC T NKn

n

N

≈ ⋅ +
=

∑ log( )λ 2
1  

(4b)

Equation (4b) shows that when AIC is used as 
a conditioning variables selection criterion, it favors 
variables that provide the largest percentage reduction of 
eigenvalues of the conditional covariance matrix, Σ

|v
. It 

tends to select conditioning variables that can explain 
away a signif icant portion of common variations of 
factor returns, R.
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Our discussion has been solely focused on how AIC 
selects the optimal factor-timing model based on the risk 
reduction. What about conditional factor returns, R

|v
? 

They should also play a role in determining model effi-
cacy. We will address this question in detail below, but 
for now note that risk reduction and conditional factor 
returns are the two sides of the same coin.

STEPWISE CONDITIONING VARIABLE 
SELECTION

Equipped with AIC in Equation (4), we devise a 
stepwise framework that selects conditioning variables 
one at a time. The proposed iterative procedure sequen-
tially populates the optimal set of conditioning variables, 
S

i
, until AIC reaches a trough and no longer decreases. 

Let i denote the current iteration of the process.

1. At the starting point, the optimal set of conditioning 
variables, S

0
, is set to null and contains no variable. 

AIC
0
 is equal to T RR⋅  ln Σ .

2. For each candidate variable k from the candi-
date set, compute the resulting model’s AIC by 
including it into the S

i
 using Equation (4).

3. If a lower AIC value is obtained in step two than 
AIC

i
, then the process continues to step four. Oth-

erwise it stops, as the optimal set of conditioning 
variables has been found.

4. The variable k that resulted in the lowest AIC is 
added into S

i
,

S S ki i+ = ∪1 { }

 AIC
i+1

 is AIC of the model using S
i+1

 as the set of 
conditioning variables.

5. Continue to step two.

INFORMATION RATIO QUANTITIES

Since its introduction by Treynor and Black [1973], 
Information Ratio (IR)—the ratio of average excess return 
to the standard deviation of excess return—is commonly 
used in active portfolio management to evaluate a man-
ager’s forecasting efficacy. Therefore, it is important to 
provide a link between IR and AIC, the model-selection 
criteria introduced in the previous section.

Here, we derive four different IR quantities that 
can be used to track improvements in the model efficacy 
and show their dependence on changes from both the 
conditional return and the conditional covariance.

CONDITIONAL MODEL IR

First, we introduce the model information ratio at 
a point in time when we know the values of conditional 
variables. As we show in the appendix, IR in general is 
related to the average factor return and factor return 
covariance by

 IR R R= ′ −( ) /Σ 1 1 2

 (5)

Using the conditional factor return and conditional 
covariance, we obtain the conditional model IR as

 
Q IR R Rv v v v= = ′ −

| | | |Σ 1

 
(6)

where the conditional return, R R Rv| = + ∆ , and the 
conditional covariance, Σ

|v
 = Σ

RR
−Σ∆∆, are given in Equa-

tion (2). Since R and Σ
RR

 do not depend on realizations 
of conditioning variables, they are constants. Thus, the 
conditional model IR is a function of the adjustment 
to the conditional return, ∆R, and the decrease in the 
conditional covariance, Σ∆∆.

As Σ∆∆ depends on the optimal set of conditioning 
variables, the conditional model IR also depends on 
that set. In general, Q increases as the decrease in the 
conditional covariance Σ∆∆ grows. More importantly, 
Q depends on the current readings of conditioning 
variables, v, as ∆R is equal to Σ ΣRV VV v V− −1 ( ). As these 
readings change over time, Q varies accordingly and so 
behaves as a point-in-time measure.

EXPECTED MODEL IR

We define the expected model IR E∆R
[Q] as the 

expected model IR through time for all possible adjust-
ments to the conditional return ∆R. We derive the 
expected model IR by averaging the conditional IR, 
Q, over the distribution of ∆R.

Because E∆R
[Q] does not have a closed-form 

solution, we first use the Taylor expansion to derive an 
approximation to the conditional IR. As a function of 
the conditional return, R

|v
, Q can be expressed as
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Equation (7) is a quadratic approximation of the 
point in time measure, where η is the partial derivative 
of IR with respect to ∆R and Θ is the Hessian matrix 
of second-order partial derivatives. This approximation 
reveals how conditioning variables inf luence the condi-
tional model information ratio. There are three sources 
of changes in the information ratio, and we discuss them 
in turn.

The constant term: risk reduction. The baseline model 
IR is ′ −R RvΣ|

1 , the constant term τ of the Taylor expan-
sion. Thus, with the expected return R being the same 
as in a static model, the baseline IR improvement is 
only due to the risk reduction. The conditional covari-
ance matrix Σ

|v
 is the residual of the unconditional one 

Σ
RR

 after removing the explained portion Σ∆∆. In all 
likelihood, this IR is larger than the unconditional IR, 

′ −R RRRΣ 1 .
The linear term: interaction between Rand ∆R. The 

linear term of the expansion η∆R is τ− −⋅ ′1 1R RvΣ ∆|
. Since 

τ is positive and does not depend on ∆R, the linear term 
increases or decreases the information ratio depending 
on how the average return R and the adjustment to the 
conditional return ∆R interact with one another.

The quadratic term: timing inf luence. The inf luence 
of the quadratic term ∆ Θ∆′R R on the information ratio 
depends on ∆R squared. Because Θ is semi-positive 
definite (as demonstrated in the appendix), the qua-
dratic term is always non-negative and attains its smallest 
value—zero—when the adjustment to the conditional 
return ∆R is either zero or a constant multiple of the 
average return vector, R. Therefore, this term tends to 
always improve the conditional IR, regardless of how the 
conditional variables behave. In a way, the factor-timing 
model adjusts itself to changes in the conditional factor 
return ∆R (due to the conditional variables), such as the 
factor exposures of the model are in line with ∆R.

Now we derive the expected model information 
ratio by integrating the approximation given by Equa-
tion (7) over the distribution of ∆R. As we show in the 
appendix,

H E Q R R trR v=   ≈ ′ + × 
−

∆ ∆∆Σ Θ Σ|
1 1

2  
(8)

In Equation (8), Σ∆∆is the covariance matrix of ∆R, 
and tr denotes the trace of a square matrix, or the sum 
of its diagonal elements. Notice that the linear term of 
the Taylor expansion drops out as E∆R

[∆R] equals zero. 
This means that the linear term is only important to 
the point-in-time model IR, but not to the expected 
model IR.

The fact that the expected information ratio is 
only a function of the adjustment to the conditional 
covariance, Σ∆∆, and does not depend on realizations of 
conditioning variables (that determine ∆R), validates 
the use of AIC as a selection criteria for factor-timing 
models, even though AIC only focuses on the model 
risk reduction.

As we discussed earlier, AIC gravitates toward con-
ditioning variables that produce the lowest conditional 
covariance, Σ

|v
 = Σ

RR
−Σ∆∆. According to Equation (8), it 

increases the expected model IR, since both terms rise 
as the uncertainty in Σ

|v
 = Σ

RR
 − Σ∆∆ lessens. Therefore, 

it is important for a modeler to focus on the global opti-
mality (expected IR) rather than the local optimality 
(point-in-time IR).

EXPECTED MODEL IR SQUARED

Although there is no closed-form solution for the 
expected model IR, we can easily derive the expected 
value of information ratio squared. It is not a direct 

 
IR R IR R

IR

R
Rv v v

v

v
| | |

|

|

( ) =   +
∂( )

∂
 













′

⋅ + ′ ⋅
∂ ( )
∂












∆ ∆R R

IR

R
R

v

v

1

2

2

2

|

|( )
 ⋅ + 





= + ⋅ + ′ ⋅ ⋅ + 





∆ ∆

∆ ∆ Θ ∆ ∆

R O R

R R R O R

3

31

2
τ η

where

  
τ η τ τ= ′ = ′( ) = ′ ⋅− − − − −R R R R Rv v v vΣ Σ Θ Σ Σ| | | |, ,1 1 1 3 1 −− − −− ′( )1 1 1Σ Σ| |v vRR

 
(7)
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measure of model efficacy, but it does provide further 
insights on how a factor-timing model can be improved. 
Let us define quantity X as the expected model IR 
squared. We show in the appendix,

 
X E Q RRR v=   = ′ + 

−
∆ ∆∆Σ Σ2 1tr ( )|  

(9)

Equation (9), unlike Equation (8), is not an 
approximation. Once again it demonstrates that con-
ditioning variables add value by both risk reduction 
and return enhancement. The former is represented by 
the Σ Σ Σ∆∆|v RR

− −
= −( )1 1

 term; the latter is represented 
by ( )RR ′ + Σ∆∆

. As a result of conditioning, the former 
term gets smaller and the latter increases by the amount 
of the decrease in the conditional covariance Σ∆∆. Thus, 
an alternative information ratio quantity, IR squared, 
further supports the application of AIC for building a 
factor-timing model.

MULTI-PERIOD IR

In the portfolio-management practice, investment 
managers and consultants frequently use realized multi-
period model-information ratios to evaluate a strategy’s 
added value. We must emphasize that the multi-period 
IR is different from the expected IR. Empirically, we 
can compute the multi-period IR, denoted by P, by 
performing the following steps.

First, calculate model returns in each period. Then 
compute the multi-period IR as the ratio of the average 
return to the standard deviation of returns. Statistically, 
this is the ratio of two expectations.

In contrast, the average model IR − E(Q) simply 
estimates the average value of single-period information 

ratios. In statistical terms, it is the expectation of the ratio 
of return to standard deviation. The difference is subtle, 
but the ratio of the two expectations is not equal to the 
expectation of the ratio, i.e., E(x)/E(y) ≠ E(x/y).

Confusion in the investment industry regarding 
the fundamental law of active management has long 
been rooted in the mistake of treating the average of 
single-period information ratios as a multi-period IR. 
Exhibit 1 presents a graphical illustration of the differ-
ence between the two quantities.

To compute P, we first need to derive the func-
tional form of model returns in each period - a

t
,

a r M r R Rt t t t v v t v t t v= ′× = ⋅ ′× = ⋅ + ′−λ λ εΣ Σ| | , | , |( )1 −−1Rv t| ,  
(10)

where ′rt  and M
t
 represent realized factor returns and con-

ditional model weights defined in Equation (2) respec-
tively, and Σ

|v
, R

|v,t
, and ε

t
 denote conditional covariance, 

conditional returns, and residual returns at time t respec-
tively. Then, we can find the multi-period IR as

P
a a

a a

X

a Xa

= =
−

=
−σ

E( )

E( ) E( ) E( )2 2 2 2

 

(11)

where X is the expected model IR squared given by 
Equation (9). Note that E(a) equals λX as the expected 
value of Rv| ′ε  is a zero matrix.

Unfortunately, the expectation of return squared 
eludes an analytic solution. To estimate the exact value 
of multi-period IR, one must compute it numerically. 
Although the multi-period IR is the correct industry 
standard for calculating the information ratio quantity 
and evaluating strategies’ added values, the expected 

e x H i b i t  1
Expected IR vs. Multi-Period IR
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model IR has the advantage of being tractable. Its deri-
vation elucidates how factor-timing models add value.

AN EMPIRICAL EXAMPLE

To illustrate the proposed framework, we provide 
an empirical example of how to select conditioning 
variables using Akaike’s information criterion, and 
how to track improvements in the efficacy of resulting 
models.

Our sample period spans from January 1994 to 
May 2009, with a forecast horizon of one month for-
ward. There are 185 independent monthly periods in the 
sample. The security universe consists of U.S. companies 
in the Citigroup Primary BMI index. On average, it 
includes 410 companies with the market’s largest capi-
talization each month. Fundamental and pricing data 
come from Worldscope and IDC databases.

DESCRIPTION OF FACTORS  
AND CONDITIONING VARIABLES

We choose three factors: earnings yield (E2P), 
return on equity (ROE), and six-month price momentum 
(PM6).5 Two reasons prompt us to use these factors in 
our illustration.

First, among the diverse set of factors commonly 
used to predict future returns, these three tend to have 
higher strategy risk (higher standard deviations of factor 
returns through time) and lower strategy return (lower 
average factor returns through time). A relatively high 
strategy risk provides an opportunity to add value 
through factor timing. In contrast, factors with relatively 
low strategy risks might be more robust, and thus more 
appropriate for static models.

Secondly, each of these three factors represents one 
of the three factor categories frequently used in quantita-
tive equity models. These categories are value (buying 
cheap stocks), quality (buying good companies), and 
momentum (riding market sentiment).

The candidate set of conditioning variables con-
sists of the S&P 500 implied volatility index (VIX), the 
trailing twelve-month S&P 500 index return (SPX), the 
Fed funds rate (FED), the U.S. consumer confidence 
index (CC), the calendar month (CAL), the debt-to-
market capitalization ratio spread (D2M), and the spread 
of book-to-price ratio (B2P).6 All of these conditioning 

variables have the potential to time various factors, as 
has been documented in many studies.

For example, Copeland and Copeland [1999] 
found that changes in the volatility index differentiate 
future daily returns for size and value factors. They show 
that on days that follow increases in the VIX, portfolios 
of large-capitalization stocks and value-based portfolios 
outperform their small and growth counterparts. Cooper 
et al. [2004] showed that momentum profits depend on 
the state of the market. The mean monthly momentum 
profit following positive market returns is positive; it is 
negative following negative market returns.

A number of papers have also examined the asso-
ciation of monetary policy-related variables with market 
or style returns. For example, Conover et al. [2005] find 
that changes in the discount rate and the associated mon-
etary policy environment—restrictive or expansive—
have a strong relationship with security returns, and 
that small-capitalization companies are more sensitive to 
changes in monetary conditions. Similarly, Chordia and 
Shivakumar [2002] argued that returns to momentum 
strategies are related to the business cycle: They are posi-
tive only during expansionary periods. Finally, Asness 
et al. [2000] used the value spread and the earnings-
growth spread as explanatory variables to show that 
value-growth style returns may be predictable.

To avoid forward-looking bias, each month current 
conditioning variables’ readings are ranked in a uniform 
distribution relative to their prior sixty observations. 
Then the uniform distribution is scaled to range from 
0 to 100, with 100 being the highest data point and 0 
being the lowest data point in the preceding five years. 
(For CAL we use numbers one through twelve to rep-
resent January through December). We use these ranks 
to time factor returns.

Exhibit 2 presents summary statistics computed 
over the considered time period. For factors, means are 
averages of rank correlations between factor values and 
one-month forward total returns (average rank IC). The 
covariance matrix presents variances and covariances of 
these rank correlations among themselves in the left box, 
as well as their covariances with conditioning variables 
in the right box. For conditioning variables, means are 
averages of conditioning variables ranks. The covari-
ance matrix shows variances and covariances of these 
ranks in the right box. Note that because trailing com-
parison windows move forward with each new observa-
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tion, means and medians of conditioning variables ranks 
through time are unlikely to be exactly 50.

CONDITIONING VARIABLE SELECTION

Here we implement the iterative procedure 
described above that selects conditioning variables from 
the candidate set into the optimal set. In the first itera-
tion, each conditioning variable is tested individually. 
Exhibit 3 presents AIC values and information ratios 
obtained by each model. Note that because Q is a point-
in-time measure and depends on current readings of 
conditioning variables, it is shown for the last observa-
tion dated May 2009.

In addition to the four information ratios discussed 
above, we numerically compute the average conditional 
model information ratio—E(Q), to gauge whether the 
expected model information ratio H obtained using the 
Taylor expansion provides a reasonable approximation. 
Indeed, Exhibit 3 reveals that H is a relatively good 

proxy for E[Q]: their rank orders are identical. In con-
trast, rank orders between E[Q] and the multi-period 
IR P are different, with only four out of seven the same. 
Their ranked correlation is 0.89.

Because D2M has the lowest AIC value in Exhibit 3, 
−576.4, we choose it as the first conditioning variable. 
Then the procedure continues to iterate and more condi-
tioning variables are selected into the optimal set. In each 
step, a conditioning variable is selected with the lowest 
value of AIC. Exhibit 4 shows that AIC decreases as new 
conditioning variables are added to the optimal set.

After the third step, iterations stop, as AIC is equal 
to −589.5 and is no longer decreasing. As shown in 
Exhibit 5, the remaining variables—B2P, FED, VIX, 
and CAL—produce AIC values that are greater than the 
value obtained in the third step. Even though informa-
tion ratio quantities marginally improve if we include 
these variables, the increased complexity of resulting 
models no longer warrants those improvements. Also 
note that, even though B2P is the second-best condi-

e x H i b i t  2
Summary Statistics

e x H i b i t  3
Conditioning Variables in the First Iteration
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tioning variable in the first iteration, it is not picked in 
this exercise. The reason: B2P has a high correlation 
with D2M (it is equal to 0.82 = ⋅639 782 7 773 5. . ).

Although AIC solely focuses on risk reduction, it 
in effect selects variables that result in the highest-ex-
pected model information ratio. As shown in Exhibit 3, 
D2M—the conditioning variable selected in the first 
step—results in the highest measure of expected model 

IR. As AIC decreases with each additional iteration, the 
information ratio quantities H, X, and E(Q) monotoni-
cally increase as illustrated in Exhibit 4. (The conditional 
information ratio Q f luctuates, as it is a point-in-time 
measure and depends on current readings of condi-
tioning variables at the last point of our data). This pat-
tern is also clearly observable in Exhibit 6. On the other 
hand, successive improvements in quantity P are smaller 

than those in E[Q], and P decreases in the 
third iteration, rather than increasing.

Two additional points can be gleaned 
from Exhibit 6. First, the expected model 
information ratio, H, is a good proxy for the 
expected model information ratio computed 
numerically, E(Q), as the two lines move 
close to each other. Given the computa-
tional intensity required to calculate E(Q), 
H seems to be an efficient approximation to 
track expected model IR changes.

Second, although the average of IR 
squared does not equal the average of IR 
raised to the power of two, E IR( )2  ≠ E IR( )2,  
the expected IR squared, X, appears to be a 
good measure to track the expected model 
IR changes. The correlation between X 

e x H i b i t  4
Conditioning Variables Selected in Each Iteration

e x H i b i t  5
Conditioning Variables in the Last Iteration

e x H i b i t  6
AIC and Information Ratio Quantities
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and E(Q) is 0.997, whereas the correlation between the 
approximation H and E(Q) is 0.985.

SOURCES OF IR IMPROVEMENT

We have discussed the three sources of improve-
ment in the conditional information ratio due to the 
introduction of conditioning variables. The example 
here lets us demonstrate the magnitude of those improve-
ments. Consider the optimal model obtained in the third 
iteration, as shown in Exhibit 4.

The Constant Term: Risk Reduction

The introduction of conditioning variables 
reduces the covariance matrix from Σ

RR
 to Σ

|v
, and thus 

increases both the conditional point-in-time and the 
expected model information ratios from ( ) /′ −R RRRΣ 1 1 2 to 
( )|

/′ −R RvΣ 1 1 2. In our example, the risk reduction compo-
nent improves the information ratio quantities by 5.7% 
(H increases from 0.212 to 0.224). It is a rather small 
improvement.

The linear term: interaction between R  and 
∆R. The linear term increases or decreases the conditional 
information ratio, depending on the interaction between 
the average return R and the adjustment to the conditional 
return ∆R at different points in time. However, since the 
average value of this term is zero, it does not change 
the expected model IR. Panel A of Exhibit 7 presents 
the distribution of the linear term. Indeed, while its 
contribution to the conditional IR varies from −0.653 
to 1.181, depending on the point in time, its mean is zero.

The quadratic term: timing inf luence. This 
term is non-negative and, according to Equation (8), 
its expected value is 1

2 ⋅ × tr Θ Σ∆∆ . Panel B of Exhibit 
7 shows the distribution of the quadratic term. Its 
contribution to the expected model IR is always positive, 
with an average value of 0.142. That is a 67% improvement 
from the static model.

To summarize, the increased model efficacy pri-
marily comes from the quadratic term: ∆R squared. It is 
not a surprise that, as the adjustment to the conditional 
return ∆R varies, model weights follow and change their 
factor exposures, too. The dynamic weighting mecha-
nism can potentially add significant value when ∆R cor-
rectly forecasts factor returns.

CONCLUSION

A large body of literature documents conditioning 
variables that can be used to time factor returns. Besides 
that, factor timing is a topic of constant interest among 
many professionals. However, few attempts have been 
made to introduce a unif ied methodology for con-
structing an optimal factor-timing model from a set of 
factors and conditioning variables. We propose a novel 
framework by extending results from Qian et al. [2004] 
around building an optimal static model, and by incor-
porating the concept of Akaike’s [1973] information cri-
terion. Furthermore, we derive useful information ratio 
quantities to track improvements in model efficacy; we 
also quantify sources of added value.

We believe that research in the area of dynamic 
model weighting is still in its infancy, and that our results 
can be extended in multiple directions. First, one of the 

most onerous assumptions in our derivations 
is that both factor returns and conditioning 
variables follow multi-variate Gaussian distri-
bution. In practice this assumption is often 
violated. Perhaps a non-parametric frame-
work can be devised as the counterpart to 
our parametric one.

Second, even though AIC seeks to 
minimize the chance of model over-f it-
ting, our information ratio quantities are 
still in-sample measures and thus unreal-
istically optimistic. Using the concept of 
cross-validation or some form of blind-
forward techniques may increase the like-

e x H i b i t  7
Histograms of IR Contributions
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lihood of getting realistic estimations. This extension 
may be indispensible to the betterment of ex post model 
performance.

a p p e n d i x

In this appendix we provide technical details of several 
equations in the main text.

To derive Equation (4), let ε
t
 be a vector representing 

the tth observation of residuals of random variables R after 
conditioning on V. In addition, for expositional simplicity and 
analytic tractability, let us assume that ε

t
 is identically distrib-

uted and serially independen, for t = 1, 2, …, T. In general, 
the last assumption can be relaxed, but then one needs to 
use a partial maximum likelihood estimator and the estima-
tion becomes computationally intensive. With our restrictive 
assumptions, the likelihood for the estimated model is

 

L v
NT

v

T t v t
t

T

( )
( )

exp
/

|

/ |= ⋅ − ⋅ ∑ ′ −

=

1

2

1
22

2
1

1π
ε ε

Σ
Σ





 

(A-1)

The sum in the exponent can be simplified by approxi-
mating it as an expectation.

 
ε ε ε εt v t

t

T

vT E TN′ −

=

′ −∑ ≅ ⋅   =Σ Σ| |
1

1
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(A-2)

Therefore,
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NT
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NT
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 (A-3)

Because the number of estimated residual covariances 
is N(N+1)/2 and the number of estimated coefficients and 
intercepts is N(K+1), we can derive AIC for a factor-timing 
model using Equation 3 as

 

AIC NT T

N N N

v= ⋅ ( ) +  + ⋅ 





+ +( ) +

log log |2 1

1 2

π Σ

(( )K + 1
 

(A-4)

After removing constants NT⋅[log(2π) + 1] and 
N(N + 1) + 2N that do not change the rank order of AIC, 
we get Equation (4), i.e., AIC = T ⋅ log[|Σ

|v
|] + 2NK.

To derive Equation (5), note that the optimal port-
folio weights are proportional to the product of the inverse 
conditional covariance matrix and the expected conditional 
return (Qian et al. [2004]). Then, the model return R

m
 and 

variance σm
2  are

 

R M R R R

M M R R
m m

m m

= = ⋅ ′

= = ⋅ ′ =

−

− −

*

* *

′

′

λ

σ λ

Σ

Σ Σ ΣΣ

1

2 2 1 1 λλm R R2 1⋅ ′ −Σ  (A-5)

Now, we can obtain the model information ratio as

 
IR
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(A-6)

In Equation (7), Θ is semi-positive definite. To prove 
that, denote A r r rr= ′ − ′( )Σ Σ Σ Σ  Then for any vector x we 
have ′ = ′ ′ − ′x Ax r r x x x r( )( ) ( )Σ Σ Σ 2. Since Σ is positive definite, 
according to the Schwarz inequality - ( )( ) ( )′ ′ ≥ ′r r x x x rΣ Σ Σ 2,  
and the two sides are equal only when x = r. then ′ ≥x Ax 0  
and A is semi-positive definite.

To derive Equation (8), we integrate Q over the con-
ditional return R

|v
. Since R  is a constant, integrating over 

∆R produces the same result,

 
H E R R R RR v≈ + ⋅ ′ + ′ 

− −
∆ Σ ∆ ∆ Θ∆τ τ 1 1 1

2|  
(A-7)

The expectation of the linear term is zero and the 
expectation of the quadratic term gives rise to

H E R R R R

tr E

R v≈ + ⋅ ′ + ′ 

= + ×

− −
∆ Σ ∆ ∆ Θ∆

Θ

τ τ

τ

1 1 1
2

1
2
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∆∆ ∆∆∆ ∆ Θ ΣR R R tr′ { } = + ⋅ ×{ }τ 1
2  

(A-8)

For Equation (9), the average of IR squared can be 
obtained similarly,

X E Q E R R R R

E

R R v
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ENDNOTES

1As illustrated by Qian et al. [2004], we build a multi-
factor model by employing traditional portfolio theory with 
the objective of maximizing the expected model-information 
ratio. Consequently, factor weights in our model are pro-
portional to the expected factor returns and inversely pro-
portional to the factor-return covariance. That is, a factor in 
the model commands a higher weight if it has higher return, 
lower volatility, or lower correlations with other factors.

2For example, Solnik [1993] proposed dynamic inter-
national allocation strategies that are based on a conditioning 
information set. Similarly, Harvey [1994] focused on condi-
tional asset-allocation strategies in the emerging markets. In 
the most recent work, Sharpe [2010] advocated an asset allo-
cation policy that adapts to market movements by taking into 
account changes in the market values of major asset classes.

3Some of the more popular and well-known models 
include F tests, stepwise, backward- and forward-selection 
procedures, bootstrap and cross-validation, Bayes factors, AIC, 
BIC, Mallows’ C

p
, and so on. Also see Burnham and Anderson 

[2002] for a detailed discussion on model selection.
4Equation (4a) demonstrates that AIC is a function of 

the product of residual variances. A geometric interpretation 
of σnn

N

=∏ 1
 is an area covered by N edges whose lengths are 

denoted as (σ1
, …, σN

), standard deviations of the residual 
covariance matrix. The smaller the area, the better the AIC.

In the case of adding an additional conditioning vari-
able, the magnitude of AIC improvement is directly linked to 
the reduction of the area covered by the standard deviations 
of the residual covariance matrix. Hence, it is the percentage 
change of the standard deviation that matters, not the magni-
tude of the standard deviation change. For example, suppose 
there are two factors: one with a residual return standard 
deviation of 100 and the other with a standard deviation of 1. 
Decreasing the standard deviation of the first factor from 100 
to 50 will yield the same AIC improvement as decreasing the 
second factor standard deviation from 1 to 0.5.

5Each month, E2P is calculated as the twelve-month 
net income before extraordinary items, divided by the market 
capitalization. ROE is equal to the twelve-month net income 
before extraordinary items divided by the common equity 
twelve months ago, and PM6 is calculated as the total return 
that includes both change to the market capitalization and 
dividends payments between the last month and six months 
ago. Each month we calculate rank correlations between fac-
tors and one-month forward returns.

6At the end of each month, VIX, SPX, FED, and CAL 
are directly observable, CC is the most recent value known, 
and spreads of debt-to-market capitalization ratio and book-

to-price ratio are calculated as the distance between median 
values of the first and tenth percentile of these ratios. Note 
that this is only an example. The selection of conditioning 
variables is nowhere near exhaustive.

REFERENCES

Akaike, H. “Information Theory as an Extension of the 
Maximum Likelihood Principle, in Petrov and Csake (eds.).” 
Second International Symposium on Information Theory, 
Academiai Kiado, Budapest, (1973).

Asness, C., J. Friedman, R. Krail, and J. Liew. “Style Timing: 
Value Versus Growth.” The Journal of Portfolio Management, 26 
(Spring 2000), pp. 50-60.

Burnham, K., and D. Anderson. “Model Selection and 
Multimodel Inference: A Practical Information-Theoretic 
Approach.” Second edition, New York: Springer-Verlag 
(2002).

Chordia, T., and L. Shivakumar. “Momentum, Business 
Cycle, and Time-varying Expected Returns.” Journal of 
Finance, Vol. 57, No. 2 (2002), pp. 985-1019.

Conover, M., G. Jensen, R. Johnson, and J. Mercer. “Is Fed 
Policy Still Relevant for Investors?” Financial Analysts Journal, 
Vol. 61, No. 1 (2005), pp. 70-79.

Cooper, M., and R. Gutierrez, Jr. “Market States and 
Momentum.” Journal of Finance, Vol. 59, No. 3 (2004), pp. 
1345-1365.

Copeland M., and T. Copeland. “Market Timing: Style and 
Size Rotation Using the VIX.” Financial Analysts Journal, Vol. 
55, No. 2, (1999), pp. 73-81.

Harvey, C. “Portfolio Enhancement Using Emerging Mar-
kets and Conditioning Information, in Claessens and Gooptu 
(eds.).” Portfolio Investment in Developing Countries 
(1994).

Qian, E., E. Sorensen, R. Hua, and R. Schoen. “Multiple 
Alpha Sources and Active Management.” The Journal of Port-
folio Management, 30 (Winter 2004), pp. 39-45.

Qian, E., R. Hua, and E. Sorensen. “Quantitative Equity 
Portfolio Management: Modern Techniques and Applica-
tions.” New York, NY: Chapman & Hall (2007), p. 195.

It 
is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rti
cl

e,
 fo

rw
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r, 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r p

er
m

is
si

on
.



The Journal of PorTfolio ManageMenT   15Fall 2012

Sharpe, W. “Adaptive Asset Allocation Policies.” Financial 
Analysts Journal, Vol. 66, No. 3 (2010), pp. 45-59.

Solnik, B. “The Performance of International Asset Alloca-
tion Strategies Using Conditioning Information.” Journal of 
Empirical Finance, 1 (1993), pp. 33-55.

Treynor, J.L., and F. Black. “How to Use Security Analysis 
to Improve Portfolio Selection.” Journal of Business, 46 (1973), 
pp. 66-86.

To order reprints of this article, please contact David Rowe at 
d.rowe@pageantmedia.com or 646-891-2157.

It 
is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rti
cl

e,
 fo

rw
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r, 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r p

er
m

is
si

on
.



The opinions expressed in this article represent the current, good faith views of the author(s) at the time of publication, are provided for 
limited purposes, are not definitive investment advice, and should not be relied on as such. The information presented in this article has been 
developed internally and/ or obtained from sources believed to be reliable; however, PanAgora does not guarantee the accuracy, adequacy 
or completeness of such information. Predictions, opinions, and other information contained in this article are subject to change continually 
and without notice of any kind and may no longer be true after the date indicated. 

The views expressed represent the current, good faith views of the author(s) at the time of publication.Any forward-looking statements 
speak only as of the date they are made, and PanAgora assumes no duty to and does not undertake to update forward-looking statements. 
Forward-looking statements are subject to numerous assumptions, risks anlJ uncertainties, which change over time. Actual results could 
differ materially from those anticipated in forward-looking statements. 

HYPOTHETICAL PERFORMANCE RESULTS HAVE MANY INHERENT LIMITATIONS,SOME OF WHICHARE DESCRIBED 
BELOW NO REPRESENTATION IS BEING MADE THAT ANY ACCOUNT WILL OR IS LIKELY TO ACHIEVE PROFITS OR 
LOSSES SIMILAR TO THOSE SHOWN. IN FACT, THERE ARE FREQUENTLY SHARP DIFFERENCES BETWEEN HYPO-
THETICAL PERFORMANCE RESULTS AND THE ACTUAL RESULTS SUBSEQUENTLY ACHIEVED BY ANY PARTICULAR 
INVESTMENT PROGRAM. ONE OF THE LIMITATIONS OF HYPOTHETICAL PERFORMANCE RESULTS JS THAT THEY 
ARE GENERALLY PREPARED WITH THE BENEFIT OF HINDSIGHT. IN ADDITION, HYPOTHETICAL TRADING DOES 
NOT INVOLVE FINANCIAL RISK, AND NO HYPOTHETICAL TRADING RECORD CAN COMPLETELY ACCOUNT FOR 
THE IMPACT OF FINANCIAL RISK IN ACTUAL TRADING. FOR EXAMPLE,THEABILITYTO WITHSTAND LOSSES OR 
TO AD HERETO A PARTICULAR INVESTMENT PROGRAM IN SPITE OF TRADING LOSSES ARE MATERIAL POINTS 
WHICH CAN ALSO ADVERSELY AFFECT ACTUAL TRADING RESULTS. THERE ARE NUMEROUS OTHER FACTORS 
RELATED TO THE MARKETS IN GENERAL OR TO THE IMPLEMENTATION OF ANY SPECIFIC INVESTMENT PRO-
GRAM WHICH CANNOT BE FULLY ACCOUNTED FOR IN THE PREPARATION OF HYPOTHETICAL PERFORMANCE 
RESULTS AND ALL OF WHICH CAN ADVERSELY AFFECT ACTUAL TRADING RESULTS. 

The S&P 500 Index is an unmanaged list of common stocks that is frequently used as a general measure of U.S. stock market performance. 

RISK CONSIDERATIONS 
International investing involves certain risks, such as currency f luctuations, economic instability, and political developments. Additional 
risks may be associated with emerging market securities,including illiquidity and volatility. Active currency management, like any other 
investment strategy, involves risk, including market risk and event risk, and the risk of loss of principal amount invested. 

Derivative instruments may at times be illiquid, subject to wide swings in prices, difficult to value accurately and subject to default by the 
issuer. Strategies that use leverage extensively to gain exposure to various markets may not be suitable for all investors. Any use of leverage 
exposes the strategy to risk of loss. In some cases the risk may be substantial. 

This material is directed exclusively at investment professionals. Any investments to which this material relates are available only to or will 
be engaged in only with investment professionals. Past performance is no guarantee of future results. 

PanAgora is exempt from the requirement to hold an Australian financial services license under the Corporations Act 2001 in respect of the 
financial services. PanAgora is regulated by the SEC under US laws, which differ from Australian laws.




