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ACTIVE RISK AND INFORMATION RATIO
Edward Qian∗ and Ronald Huaa

One of the underlying assumptions of the Fundamental Law of Active Management is
that the active risk of an active investment strategy equates estimated tracking error by
a risk model. We show there is an additional source of active risk that is unique to each
strategy. This strategy risk is caused by variability of the strategy’s information coefficient
over time. This implies that true active risk is often different from, and in many cases,
significantly higher than the estimated tracking error given by a risk model. We show
that a more consistent estimation of information ratio is the ratio of average information
coefficient to the standard deviation of information coefficient. We further demonstrate
how the interaction between information coefficient and investment opportunity, in terms
of cross sectional dispersion of actual returns, influences the IR. We then provide supporting
empirical evidence and offer possible explanations to illustrate the practicality of our findings
when applied to active portfolio management.

1 Introduction

Information ratio (IR), the ratio of average excess
return to active risk, is an important performance
measure for active investment management. One
result regarding ex ante IR is Grinold’s (1989) Fun-
damental Law of Active Management, which states
that the expected IR is the expected information
coefficient (IC) times the square root of breadth.
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IC refers to the cross-sectional correlation coeffi-
cient between forecasts of excess returns and actual
returns. For equity portfolios—the focus of the
present paper, the breadth is the number of stocks
within a select universe. In mathematical terms, the
relationship is

IR = IC
√

N (1)

Throughout the paper, the bar denotes the expected
value.

Equation (1), while providing insight to active man-
agement, is based on several simplified assumptions.
Various studies re-examine this result when dif-
ferent assumptions are used. For instance, one of
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the assumptions is that active portfolio is a pure
long–short portfolio free of long-only constraint.
Grinold and Kuhn (2000) examine how IR devi-
ates from Eq. (1) under the long-only and other
portfolio constraints using simulation techniques.
Recently, Clarke et al. (2002) developed a frame-
work for measuring such deviations by including
a “transfer coefficient” on the right-hand side of
Eq. (1). In addition to the long-only constraint,
they also study the impact of constraints in terms
of turnover as well as factors such as size and
style. Both studies conclude that portfolio con-
straints generally tend to lower ex ante IR, as given
in Eq. (1).

Equation (1) hinges on another simplified assump-
tion regarding active risk of investment strategies.
Namely, it assumes that the active risk of an invest-
ment strategy is identical to the tracking error
estimate by a risk model. Our research shows that
ex post active risk often significantly exceeds the
target tracking error by risk models, even after
appropriately controlling risk exposures specified by
a risk model. In this paper, we will unveil an addi-
tional source of active risk that accounts for this
discrepancy. This new source of risk stems from the
variability of IC, i.e. the correlation between fore-
casts and actual returns. Hence, it is unique to each
investment strategy and we shall refer to it as strat-
egy risk. Mathematically, it is the standard deviation
of IC, i.e. std(IC).

The previous research mentioned above, while
acknowledging the average IC of different strate-
gies, assumes that all strategies have the same active
risk if they have the same target tracking error.
This simplified assumption is not adequate in char-
acterizing different investment strategies. As we
will show below, the true active risk is a com-
bination of the risk-model risk and the strategy
risk. Although there are other alternative mea-
surements of active risk, we consider standard
deviation of excess return or tracking error in the

present paper. We use active risk and tracking error
interchangeably.

It is no surprise that the variability of IC plays a
role in determining the active risk. Just imagine
two investment strategies, both taking the same
risk-model tracking error σmodel over time. The first
strategy is blessed with perfect foresight and it gen-
erates constant excess return every single period. In
other words, it has a constant positive IC for all
periods such that std(IC) is zero. Such a risk-free
strategy, admittedly hard to find, has constant excess
return, and thus, no active risk whatsoever. How-
ever, the risk model is not aware of the prowess of
the strategy and dutifully predicts the same track-
ing error all the time. In this case, the risk model
undoubtedly overestimates the active risk. In con-
trast, the second strategy is extremely volatile with
large swings in its excess return, i.e. its IC varies
between −1 and +1 with a large std(IC). As a result,
its active risk might be much larger than the risk
model estimate. Thus, the two strategies with iden-
tical risk-model tracking error have very different
active risk in actuality.

In practice, the difference between active invest-
ment strategies is not that extreme. However,
our experience shows that risk-model tracking
error given by most commercially available risk
models routinely and seriously underestimates the
ex post active risk.1 This underestimation could have
serious practical consequences. For example, an
enhanced index product with low risk-model track-
ing error but high standard deviation of IC could be
far more risky, because the true active risk is larger.

Our results will enable portfolio managers to obtain
more accurate estimates of active risk of their active
strategies, and as a result, better estimates of IR.
Furthermore, they can be used jointly with the
results of Grinold and Kuhn (2000) and Clarke et al.
(2002) by portfolio managers to provide realistic
IR estimates.
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2 Notations and main results

To facilitate our analysis, we introduce the following
notations and terminologies.

• Risk-model tracking error, denoted as σmodel: It is
the tracking error or the standard deviation of
excess returns estimated by a generic risk model
such as BARRA, and it is also referred to as risk-
model risk or target tracking error.

• Strategic risk, denoted as std(IC): It is the stan-
dard deviation of IC of an investment strategy
over time. It is unique to each active investment
strategy, conveying strategy-specific risk profile.

• Active risk, denoted as σ : It is the active risk or
tracking error of an investment strategy measured
by the standard deviation of excess returns over
time.

Our main result regarding the active risk is the fol-
lowing: the active risk is a product of the strategy
risk, the square root of breadth, and the risk-model
tracking error:

σ = std(IC)
√

N σmodel (2)

This result has several clear implications. First, the
active risk is not the same for different investment
strategies due to varying levels of strategy risks.
Second, only rarely does the active risk equal the
risk-model tracking error. It happens only when
strategy risk, std(IC), is exactly equal to the recipro-
cal of the square root of N . This is true in an ideal
situation, in which the standard deviation of IC is
proportional to the sampling error of a correlation
coefficient, which is the reciprocal of the square root
of N . In reality, however, as our empirical results
will show, the standard deviation of IC bears little
relationship to this theoretical sampling error, and
is significantly different for different strategies.

We note that our paper is not a critique of any
risk model because our focus is not the same as

studying the measurement error of risk models over
a single rebalancing period. In those studies (e.g.
Hartmann et al., 2002), one analyzes the perfor-
mance of risk models over a single, relatively short
period, during which the examined portfolios are
bought and held. The approach is to compare pre-
dicted tracking errors of a risk model to the realized
tracking errors using either daily or weekly excess
returns for many simulated portfolios. Hartman
et al. (2002) attribute the difference between the
estimated risk and the ex post tracking error to sev-
eral items: estimation error in covariances in a risk
model, time varying nature of covariances, serial
auto-correlations of excess returns, and the drift of
portfolio weights over a given period. Depending
on how these factors play out in a given period,
a risk model can overestimate as well as under-
estimate with seemingly equal probability ex post
tracking errors of simulated portfolios. There is no
clear evidence of bias one way or the other.

In contrast, we study the active risk of an investment
strategy over multiple rebalancing periods, during
which the active portfolio is traded periodically
based on the forecasts of that investment strategy.
While it is useful to consider the single-period active
risk of a buy-and-hold portfolio, it is arguably more
practical to analyze the active risk over multiple
rebalancing periods. Our analysis reveals a clear
underestimation bias of risk-model risk even if the
risk model is adequate. This is because using a risk
model alone is not enough to accurately estimate
the true active risk. Only through consideration of
strategy risk can an unbiased estimate of active risk
be obtained.

Because of more realistic estimate of active risk, our
estimate of IR is different from that of Eq. (1). We
shall show that IR of an investment strategy is

IR = IC

std(IC)
(3)
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Equation (3) is very intuitive. Since IR measures
the ratio of average excess return to the standard
deviation of excess return, if IC were the sole
determinant of excess return, then IR would be
the ratio of average IC to the standard deviation
of IC. In most of the cases we have studied, IR
is lower than that of Eq. (1) because the true
active risk tends to be higher than the risk-model
tracking error.

3 Cross-sectional IC and single-period
excess return

To derive the IR of an active investment strategy
over multiple periods, we start by calculating a
single-period excess return, which is the summed
product of active weights and subsequent realized
actual returns. We use active mean–variance opti-
mization to derive the active weights under the
following framework. First, we model security risk
by a generic multi-factor fundamental risk model,
such as the BARRA risk model. Second, the opti-
mal active weights are selected by mean–variance
optimization while neutralizing portfolio exposures
to all risk factors, in addition to being dollar neu-
tral. We have done so for two reasons. First, the
alpha factors we shall study in the empirical sec-
tion below are employed by quantitative managers
mostly to exploit stock specific returns. The second
reason is more technical. Imposing binding con-
straints on all risk factors allows us to derive an
analytical solution for the optimal portfolio weights
without knowing the historical covariance matrices
of risk factor returns. While it is certainly possi-
ble to extend our analysis to strategies that also
take factor bets, the research is out of the scope
of this article. While we reasonably expect that dif-
ferent factor-related strategies would have their own
component of strategy risk, practitioners should use
caution when applying our results directly to those
strategies.

Under these conditions, Appendix A gives the exact
solution for the active weights wi,t for security i
and time t . The excess return for the period is the
summed product of the active weights wi,t and the
subsequent actual return ri,t . To reflect dollar and
factor neutral constraints, we recast the summed
product expression by adjusting both the forecasts
and the actual returns to obtain

αt = λ−1
t

N∑
i=1

Ri,t Fi,t (4)

where λ is a risk-aversion parameter used in the opti-
mization, R is the risk-adjusted actual return, and
F is the risk-adjusted forecast. They are the “raw”
return or forecast adjusted for dollar and factor neu-
trality, and then normalized by security specific risk
(Appendix A).

So far, our derivation of Eq. (4), in Appendix A,
has been standard. Similar analyses can be found in
Grinold (1989) and Clarke et al. (2002). From this
point on, our analysis uses a different approach. In
previous work (Grinold, 1994; Clarke et al., 2002),
one makes an assumption about the expected
returns of individual securities, such as “Alpha is
Volatility Times IC Times Score” (Grinold, 1994).
The validity of such a normative approach, which
has its origin in risk modeling, is questionable in
reality. We shall adapt a descriptive approach with
no assumptions regarding individual securities.2 We
write Eq. (4) as the covariance between the risk-
adjusted returns and forecasts, which in turn can be
rewritten as a product of IC and their dispersions.3

We have

αt = λ−1
t (N − 1)[cov(Rt , Ft ) + avg(Rt )avg(Ft )]

= λ−1
t (N − 1)ICt dis(Rt )dis(Ft ) (5)

We use Rt and Ft to denote the cross-sectional col-
lections of the risk-adjusted returns and forecasts,
and ICt = corr(Rt , Ft ). The average term in Eq. (5)
vanishes because we have made avg(Rt ) = 0 (see
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Appendix A). Equation (5) states that the single-
period excess return is proportional to the IC of
that period and the dispersions of the risk-adjusted
returns and forecasts for that period. The intuition
is clear: the excess return is a function of IC, which
measures the forecast’s cross-sectional ranking abil-
ity, the dispersion of the forecasts, which reflects
the perceived cross-sectional opportunity, and the
dispersion of the actual returns, which represents
the actual cross-sectional opportunity.

The risk-model risk, on the other hand, depends
only on the dispersion of the forecasts through the
optimal active weights. They are related by (see
Appendix A)

σmodel ≈ λ−1
t

√
N − 1 dis(Ft ) (6)

In other words, the risk-model risk is the disper-
sion of the risk-adjusted forecasts (which varies
from period to period) times the square root of
N − 1 divided by the risk-aversion parameter.
Equations (5) and (6) show that, while the excess
return depends on IC and both dispersions, the
risk-model risk is only a function of the forecast
dispersion. In other words, the risk-model risk
is independent of IC since the risk model has
no knowledge of the information content of the
forecasts.

We shall maintain a constant level of risk-model
tracking error4 by varying the risk aversion param-
eter accordingly. Combining Eqs. (5) and (6)
produces the relationship

αt ≈ ICt
√

N σmodeldis(Rt ) (7)

We have replaced N − 1 with N , which is justi-
fied when N is large enough. The excess return of
an active strategy in a single period is IC times the
square root of breadth times the risk-model track-
ing error times the dispersion of the risk-adjusted
returns. Among the four terms in Eq. (7), the
dispersion of the risk-adjusted returns is new and

thus deserves some discussion. In theory, if the
risk model truly describes the return of every single
security, then each risk-adjusted return Ri,t is close
to a standard normal random variable. The base
case estimation for the dispersion of a large num-
ber of such random variables is unity.5 Later, we
shall see that this is approximately true for certain
risk models. This dispersion represents the degree
of opportunity in the market. For a given level of
IC and risk-model risk, a greater opportunity leads
to a higher excess return.

4 Information ratio

We derive IR of an investment strategy over multi-
ple periods. Equation (7) is close to a mathematical
identity. While it is always true ex post, we now
use it in ex ante by considering its expectation and
standard deviation, i.e. the expected excess return
and the expected active risk. Among the four terms
affecting the excess return, we assume that the num-
ber of stocks does not change over time and the
risk-model tracking error remains constant. For the
two remaining terms that do change over time, IC
is associated with greater variability than the disper-
sion of the risk-adjusted returns. Therefore, as a first
approximation we treat the latter also as a constant.

4.1 The simple case

Assuming dis(Rt ) is constant and equal to its mean,
the expected excess return is

ᾱt = ICt
√

N σmodeldis(Rt ) (8)

The expected excess return is, therefore, the average
IC (skill) times the square root of N (breadth) times
the risk-model tracking error (risk budget) times the
dispersion of actual returns (opportunity).

The expected active risk is

σ = std(IC)
√

N σmodeldis(Rt ) (9)
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The standard deviation of IC measures the consis-
tency of forecast quality over time. Therefore, the
active risk is the standard deviation of IC (strategy
risk) times the square root of N (breadth) times the
risk-model tracking error (risk budget) times the
dispersion of actual returns (opportunity).

The ratio of Eq. (8) to (9) produces Eq. (3); i.e.
IR is the ratio of the average IC to the standard
deviation of IC, or IR of IC. We also note that
when the mean dispersion is unity, Eq. (9) reduces
to Eq. (2).

4.2 A better estimation of IR

In reality, the variability in the dispersion of the
risk-adjusted return dis(Rt ) is small but, nonethe-
less, non-zero. What happens to IR if we include
this variability? The following insight from Eq. (7)
helps us to understand how the interaction between
the IC and the dispersion affects the excess return.
To produce a high positive excess return for a sin-
gle period, we need high and positive IC as well as
high dispersion. Conversely, when IC is negative,
we would like a low dispersion so that the negative
excess return would be small in magnitude. This
argument implies that, over the long run, the per-
formance will benefit from a positive correlation
between IC and the dispersion. On the other hand,
a negative correlation will hurt the average excess
return.

Appendix B shows that the expected excess return
including this correlation effect is

ᾱt = √
N σmodel{ICt dis(Rt )

+ ρ[ICt , dis(Rt )]std(ICt )std[dis(Rt)]}
(10)

The additional term consists of the correlation
between IC and the dispersion, and the standard
deviations of IC and the dispersion. According to

Appendix B, the active risk is little affected by the
correlation because the coefficient of variation of
dis(Rt ) is much smaller than that of IC and one.
Combining Eqs. (9) and (10) produces the new IR
estimate

IR = ICt

std(ICt )
+ ρ[ICt , dis(Rt)] std[dis(Rt)]

dis(Rt)
(11)

The second term captures the correlation effect on
IR. It has two factors. The first is the correlation
between IC and the dispersion over time and the
second term is the coefficient of variation of the
dispersion. As we mentioned earlier, the coefficient
of variation of the dispersion is usually small. There-
fore, the effect of the second term is typically small
unless the correlation between IC and the disper-
sion becomes very high, either positive or negative.
For most practical purposes, Eq. (3), i.e. the first
term in Eq. (11), approximates IR well enough.
Nonetheless, Eq. (11) is an improvement.

5 Empirical examinations

To demonstrate that Eq. (9) is a more consistent
estimator of ex ante active risk, we study empirical
results of 60 quantitative equity strategies. To ensure
practical relevance, these strategies are based on a
set of quantitative factors commonly used by active
managers. The set encompasses a wide range of well-
known market anomalies, and thus provides a good
representation of different categories of quantitative
strategies deployed by active managers.

We first briefly describe the data. Then, we apply
the analysis to the Russell 3000 indices to demon-
strate our theoretical result. To assess the statistical
significance of the differences in the strategy risk,
we provide a closer examination of two valuation
factors—gross profit to enterprise value and forward
earnings yield. We introduce a strategy-specific scal-
ing constant κ and use it in conjunction with a
risk model to provide a consistent forecast of ex post
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active risk. Lastly, we suggest different ways to fore-
cast strategy risk and ascertain the efficacy of such
predictions.

5.1 The data

The quarterly data used in our analysis span 1987
to 2003, with 67 quarters in total. The alpha fac-
tors come from a proprietary database and they
include seven different categories: price momen-
tum, earnings momentum, earnings surprise, val-
uation, accruals, financial leverage, and operating
efficiency. The values for beta, systematic risk fac-
tors, industry risk factors, and stock specific risk
come from the BARRA US E3 equity risk model.
To ensure factor accuracy and to prevent undue
influence from outliers, we first exclude stocks that
have factor values exceeding five standard devia-
tions on each side. Next, we bring factor values
between three and five standard deviations to the
three standard deviation values. The actual num-
ber of stocks that are tested against the Russell
3000 index is, therefore, fewer than 3000. In addi-
tion, the number of stocks fluctuates from quarter
to quarter due to data availability as well as the
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Figure 1 Histogram of the ex post active risk of equity strategies.

reconstitution activities of Russell indices. How-
ever, the fluctuation is insignificant as to alter the
analysis.

In terms of portfolio construction, we form optimal
long–short portfolios on a quarterly basis. Subse-
quently, cross-sectional analyses of alpha and IC and
dispersion of the risk-adjusted returns are computed
on a quarterly basis. We set the constant risk-model
tracking error at 2.5% per quarter. Additionally, to
control risk exposures appropriately, we neutralize
active exposures to all BARRA risk factors (market
beta, 13 systematic risk factors, and 55 industry risk
factors) when rebalancing portfolios each quarter.
Hence, the risk-model risk is 100% stock specific
according to the risk model. The results below
are collected on a quarterly basis and are annual-
ized for the purposes of this paper. For example,
the annualized target tracking error would be 5%,
provided there is no serial auto-correlation in alpha.

5.2 The Russell 3000 universe

Figure 1 shows the histogram of ex post active
risk of the 60 strategies. Although the risk-model

THIRD QUARTER 2004 JOURNAL OF INVESTMENT MANAGEMENT



8 EDWARD QIAN AND RONALD HUA

tracking error is targeted at 5% for all strategies,
the ex post active risks differ widely with substantial
upward bias, indicating the risk model’s propen-
sity to underestimate active risk. The average active
risk is 7.7% and the standard deviation is 1.7%.
The highest active risk turns out to be 13.1% while
the lowest is just 5.0%. In other words, almost all
strategies experienced ex post risk higher than the
risk-model tracking error.

To gauge the risk model’s estimation bias in relative
terms, we rearrange Eq. (9) to derive a scaling con-
stant κ that approximates the ratio of true active risk
to the risk-model risk, in terms of the standard devi-
ation of IC for each factor and the average number
of stocks over time:

κ = std(IC)
√

N ≈ σ

σmodel
(12)

We have neglected the dispersion of returns, dis(Rt ),
because it turns out to be very close to unity with
a value at 1.01 and a standard deviation of 0.15.
By this measure, the BARRA E3 model shows
remarkable internal consistency. Figure 2 shows
the histogram of the scaling constant κ for all 60
strategies. Note that for a majority of strategies
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Figure 2 Histogram of the scaling constant κ of equity strategies.

the model underestimates the ex post active risk by
50% or more. Figure 2 resembles Figure 1 quite
closely except that the x-axis is rescaled by the risk-
model tracking error of 5%. A scatter plot of the
active risk and κ (Figure 3) confirms the observa-
tion. Additionally, Table 1 reports the estimated
coefficients of the regression using the scaling con-
stant κ to explain ex post active risk. The R-squared
of this regression is 98%, indicating that Eq. (9)
is a highly accurate approximation of the ex post
active risk despite the assumption that dis(Rt ) is
constant over time. More importantly, it seems pos-
sible that practitioners can use the scaling constant
κ to adjust risk-model tracking error to achieve a
consistent forecast of active risk. We demonstrate
this adjustment below.

5.3 Information content of strategy risk:
an example

The strategy risks of these quantitative strategies
vary greatly. Naturally, one wonders about the
statistical significance of their differences. These
differences are important in terms of forecasting
portfolio active risk that incorporates strategy risk.
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Table 1 Summary statistics of coefficient estimates.

Coefficients Standard error t -Stat P-value Lower 95% Upper 95%

Intercept −0.0034 0.0015 −2.3260 0.0235 −0.0063 −0.0005
Scaling constant κ 0.0528 0.0009 55.9084 0.0000 0.0509 0.0547

Table 2 Summary statistics of valuation factors.

Average STD of IR of Average STD of IR of Average Average
Alpha Alpha Alpha IC IC IC dis(R) N

GP2EV 6.2% 6.9% 0.90 2.4% 2.7% 0.91 1.01 2738
E2P 3.3% 8.7% 0.38 1.4% 3.4% 0.41 1.00 2487

In other words, after appropriately controlling risk
exposures specified by the BARRA E3 model in
our case, does the standard deviation of ICs pro-
vide additional insight regarding the risk profile of
an equity strategy? The answer to this question is
“yes” in many cases. Here we select two valuation
factors—gross profit to enterprise value (GP2EV)
and forward earnings yield based on IBES FY1 con-
sensus forecast (E2P)—for a closer examination.
We test the statistical significance of the difference
between the two strategy risks using the F -test.

Table 2 shows the summary statistics of these two
factors. For GP2EV, the standard deviation of IC
equals 2.7%; it is 3.4% for E2P. The ex post tracking
errors are 6.9% and 8.7%, respectively. Since both
standard deviations are estimated over 67 quarters,
the degree of freedom equals 66. The variance ratio
of the two factors is (3.4×3.4)/(2.7×2.7) = 1.58
and α equals 0.032. Thus, in this example, there is
enough evidence to reject the null hypothesis that
these two factors, from the same valuation category,
have the same strategy risk at a 5% confidence level.
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Our results indicate that the strategy risks of factors
selected from different categories, more often than
not, are statistically different.

5.4 Consistent estimator of active risk

Can practitioners use strategy risk in conjunction
with a risk model to compute a more consistent active
risk forecast? As a first attempt to answer this ques-
tion, we divide the testing period into two halves:
in-sample period (1986–1994) and out-of-sample
period (1995–2003). In the in-sample period, we
estimate κ according to Eq. (12) for each of the
60 equity strategies. Then, in the out-of-sample
period, we adjust the risk-model tracking error by
1/κ , using strategy-specificκ to compensate the risk
model’s bias in estimating active risk. The adjusted
risk-model tracking error is

σ ∗
model = σmodel

κ
(13)

Figure 4 shows the distribution of ex post active
risks in the out-of-sample period when we set
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Figure 4 Histogram of the ex post active risks using adjusted model TE (1995–2003).

the target tracking error at 5%/κ (the adjusted
risk-model tracking error), and for comparison,
Figure 5 shows active risk of portfolios targeting
the same tracking error at 5% (the original risk-
model tracking error). We would like to emphasize
again that the adjusted risk-model tracking error
σ ∗

model is unique to each equity strategy depending
on its κ estimates, while the risk-model tracking
error σmodel is the same for all strategies. From
these two histograms, it is obvious that σ ∗

model
is a more consistent estimator of active risk. First,
the average ex post active risk is 4.7% when using
σ ∗

model, and 7.6% when using σmodel. Thus, the
expected ex post active risk is much closer to our
target of 5% with no bias when using the adjusted
risk-model tracking error. Second, the adjusted
risk-model tracking error also provides a tighter,
more bell-shaped distribution of ex post active
risks. The standard deviation of ex post active risk
is 0.76% when using σ ∗

model, and 1.45% when
using σmodel. It is apparent that in this shorter
period, the risk model experienced a similar prob-
lem of underestimating the true active risks of many
strategies.

JOURNAL OF INVESTMENT MANAGEMENT THIRD QUARTER 2004



ACTIVE RISK AND INFORMATION RATIO 11

0

2

4

6

8

10

12

<
1.

8%
2.

0%
2.

5%
3.

0%
3.

5%
4.

0%
4.

5%
5.

0%
5.

5%
6.

0%
6.

5%
7.

0%
7.

5%
8.

0%
8.

5%
9.

0%
9.

5%
10

.0
%

10
.5

%
11

.0
%

11
.5

%
12

.0
%

12
.5

%
13

.0
%

13
.5

%
>

14
.3

fr
eq

ue
nc

y
mean = 7.6%
std = 1.5%

Figure 5 Histogram of the ex post active risks using 5% Model TE (1995–2003).
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Figure 6 Scatter plot of in-sample strategy risk versus out-of-sample strategy risk.

5.5 Persistence of strategy risk

Naturally, one must be able to forecast the strat-
egy risk, std(IC), with reasonable accuracy in order
to provide a consistent forecast of active risk using
Eq. (9). The application of the scaling constant κ

above constitutes a simplistic form of forecasting
strategy risk—using the strategy risk estimated in
the in-sample period as the forecast of the out-of-
sample period. Our simplistic forecasting method

assumes that strategy risk persists from the in-
sample period to the out-of-sample period. One
implication of this methodology is that the relative
ranking of strategy risks stays the same in both peri-
ods. We employ the in-sample and out-of-sample
specification to show this is indeed the case.

Figure 6 shows the scatter plot of strategy risks mea-
sured in the in-sample period (x-axis) versus that in
the out-of-sample period (y-axis). The R-squared
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Table 3 Summary statistics of coefficient estimates.

Coefficients Standard error t -Stat P-value Lower 95% Upper 95%

Intercept 0.0138 0.0020 7.0245 0.0000 0.0099 0.0178
In-sample strategy risk 0.4941 0.0622 7.9449 0.0000 0.3697 0.6186

of the regression, using in-sample strategy risks
to explain the variability of out-of-sample strategy
risks, is 52%. Table 3 shows the summary statis-
tics of the coefficient estimates of this regression.
The null hypothesis, that in-sample strategy risks
have no explanation power of the variability of the
out-of-sample strategy risks, is rejected at a 1%
confidence level. Hence, it is plausible that, using
this simplistic forecast method in conjunction with
Eq. (9), active managers can improve their ability
to assess portfolio active risk.

6 Conclusion

Among active equity managers, it is commonly
known that ex post active risk often exceeds the tar-
get tracking error specified by a risk model. We
attribute this deviation to an additional source of
active risk—the strategy risk. Measured as the stan-
dard deviation of IC, strategy risk is unique to each
investment strategy conveying a strategy-specific
risk profile. Furthermore, through analytical deriva-
tions, we show that a consistent estimator of active
risk must incorporate strategy risk in conjunction
with the risk-model tracking error. Consequently,
we provide a practical extension to the Fundamen-
tal Law of Active Management: ex ante IR equal
to the ratio of average IC to the standard deviation
of IC. Additionally, we also demonstrate that IR
depends not only on the strength of IC, but also
on the correlation between IC and the dispersion
of the risk-adjusted returns over time.

Empirical evidence shows that risk models sys-
tematically underestimate ex post active risk. It is

reasonable to expect this, because, by definition,
the risk-model risk only accounts for tracking error
caused by risk factors and specific risks specified
by a risk model. However, all active strategies are
exposed to alpha factors, which must have explana-
tory power for cross-sectional returns beyond the
power provided by the risk model. This cross-
sectional correlation between the alpha factor and
the actual returns introduces additional risk not
embedded in the risk model. Equation (9) provides
a way to capture both the risk-model risk and the
strategy risk associated with alpha factors.

This fact alone does not imply the deficiency of a
risk model, because the job of a risk model is to
capture the majority of cross-sectional dispersion
in security returns embedded in commonly speci-
fied risk factors. While it is plausible that a given
risk model might be improved with additional risk
factors, it is unrealistic to expect a risk model to
include all possible fundamental factors in all possi-
ble variations, as is often the case when active equity
managers search for alpha factors. Combining the
risk-model risk and the strategy risk represents a
reasonable and realistic solution to the issue.

Our empirical survey of commonly used quantita-
tive equity strategies confirms our analytical results.
The difference in strategy risk is often statistically
significant. We also illustrate how to use strategy risk
to recalibrate the risk-model tracking error so that
the ex ante active risk reaches a target level. While
more sophisticated methods to forecast strategy risk
await further research, such a simple modification
has already proven far superior to just using the
risk-model risk alone.
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In addition to these benefits, our analysis also
enables practitioners to estimate the ex ante excess
return and active risk more accurately, without the
daunting task of optimized back tests. This is espe-
cially true for market neutral equity hedge fund
strategies with fewer portfolio constraints because
our risk-constrained optimization closely resembles
those strategies. For long-only active strategies, or
other kinds of strategies with more constraints,
our estimation could be combined with those of
Grinold and Kahn (2000) and Clarke et al. (2002)
to provide a more realistic IR estimate. Finally, for
active equity managers, our analytical framework
can be applied in a number of ways to provide
a rigorous risk specification of equity investment
strategies in terms of diversification benefit across
strategies and most importantly better portfolio IR.
For example, Sorensen et al. (2003) illustrate a way
to combine multiple alpha sources more efficiently
in an unconditional framework to achieve the high-
est portfolio IR. Alternatively, we can also apply the
analysis in a conditional framework to take advan-
tage of certain market conditions through tactical
rotations of active investment strategies. These rota-
tion tactics can be grounded on careful examination
of how the strategy excess return and the strat-
egy risk respond to different macro-environment,
market segments (style or sector), and seasonal
influences.

Appendix A: optimal active weights
and excess return

This appendix provides mathematical details of the
results in Section 1 regarding the optimal active
weights and the excess return.

The active weights is the solution of the following
optimization problem: Maximize

f ′
t · wt − 1

2
λt · (w′

t · Vt · wt ) (A.1)

subject to
w′

t · i = 0
w′

t · Bt = 0
(A.2)

The subscript t denotes the period. For clarity, we
omit it from our notation hereafter. In Eqs. (A.1)
and (A.2), f = (f1, f2, . . . , fN )′ is the vector of alpha
factors or forecasts of excess returns over an index at
time t ; w = (w1, w2, . . . , wN )′ the vector of active
weights against the index; B = (β1, β2, . . . , βM )
the matrix of risk factors with each βi a vector of
risk factor; i = (1, 1, . . . , 1)′ the vector of ones; λ

the risk-aversion parameter; and V the covariance
matrix. The number of risk factors is M .

The covariance matrixV in a multi-factor risk model
takes a special form:

V = B · �B · B′ + S (A.3)

where �B is the covariance matrix of risk fac-
tors, and S = diag(σ 2

1 , σ 2
2 , . . . , σ 2

N ) is the diago-
nal matrix of stock-specific risks. Equation (A.3)
assumes zero correlation between stock-specific
risks. Because we require that the active weights
are factor neutral, and there is no systematic risk
in the active weights whatsoever, we can reduce the
objective function (A.1) to the following, provided
that we keep all the constraints

f ′ · w − 1

2
λ · (w′ · S · w) (A.4)

We can now solve the optimization of (A.4) with
the constraints (A.2) analytically using the method
of Langrangian multipliers. We switch from matrix
notation to using summations. The new objective
function including M + 1 Langrangian multipliers
(1 for the dollar neutral constraint and M for M risk
factors) is

N∑
i=1

fiwi − 1

2
λ

N∑
i=1

w2
i σ 2

i − l1
N∑

i=1

wi

− l2
N∑

i=1

wiβ1i − · · · − lM+1

N∑
i=1

wiβMi (A.5)
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Taking the partial derivative with respect to wi and
equating it to zero gives

wi = λ−1 fi − l1 − l2β1i − · · · − lM+1βMi

σ 2
i

(A.6)

The values of Langrangian multipliers are deter-
mined by the constraints through a system of
linear equations.

Given the active weights, the portfolio excess return
is the summed product of the active weights and the
actual excess returns

α =
N∑

i=1

wir i

= λ−1
N∑

i=1

fi − l1 − l2β1i − · · · − lM+1βMi

σ 2
i

r i

(A.7)

To arrive at Eq. (4) with the risk-adjusted forecast
and the risk-adjusted return, we replace the return
ri by ri − k1 − k2β1i − · · · − kM+1βM 1i , where
(k2, . . . , kM+1) are the returns to M risk factors.
This does not change the equation due to the con-
straints placed on the active weights. We choose the
value of k1 to make the risk-adjusted return mean
zero. Defining

Fi = fi − l1 − l2β1i − · · · − lM+1βMi

σi

Ri = ri − k1 − k2β1i − · · · − kM+1βM 1i

σi

(A.8)

Eq. (A.7) becomes Eq. (4).

We next calculate the residual variance or equiva-
lently the risk-model tracking error as the sum of
active weights squared times the specific variance.
The active portfolio has no market risk within the
risk model because the active weights are neutral to

all risk factors. We have

σ 2
model =

N∑
i=1

w2
i σ 2

i = λ−2
N∑

i=1

F 2
i (A.9)

The residual variance is, therefore, the sum of the
risk-adjusted forecasts squared. Therefore,

σmodel = λ−1
t

√√√√ N∑
i=1

F 2
i,t

= λ−1
t

√
N − 1

√
[dis(Ft )]2 + [avg(Ft )]2

≈ λ−1
t

√
N − 1 dis(Ft ) (A.10)

We have assumed that avg(Ft ) ≈ 0 and this
approximation is quite accurate in practice.

Appendix B: The information ratio

This appendix presents the exact results regarding
the expected excess return and active risk. To obtain
the expected excess return and active risk based on
Eq. (7) we must find the expected value and variance
of a product of two random variables. We use x
and y to denotes IC and the dispersion of the risk-
adjusted returns.

Elementary statistical calculation tells us that

E (xy) = x̄ ȳ + ρσxσy (B.1)

The barred variables are averages and σ denotes the
standard deviation, and ρ is the correlation. Identi-
fying IC as the variable x and the dispersion of the
risk-adjusted returns as the variable y, we obtain the
expected excess return as in Eq. (10).

We can also obtain the variance of x times y as

Var(xy) = σ 2
x σ 2

y + ρ2σ 2
x σ 2

y

+ x̄2σ 2
y + ȳ2σ 2

x (B.2)
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When σy/ȳ � 1 and σy/ȳ � σx/x̄, i.e. the
coefficient of variation for the dispersion of the risk-
adjusted returns is much less than 1 and much less
than the coefficient of variation for IC, the variance
can be approximated by

Var(xy) = ȳ2σ 2
x (B.3)

This approximation justifies using Eq. (9) for the
active risk.

Notes

1 This problem has also been recognized by other practition-
ers. For example, Freeman (2002) notes that “if a manager is
optimizing the long-short portfolio, he or she better assume
that the tracking error forecast (of a risk model) will be at
least 50 percent too low.”

2 Grinold (1994) proposed this alpha formula mainly for
translating cross-sectional z scores into alpha inputs for an
optimizer. While such a prescription holds true for a lin-
ear time series forecast model, it is not theoretically valid
with cross-sectional z scores. We demonstrate in the paper,
that such a prescription is not necessary in deriving IR.
Furthermore, while it is necessary to use a risk model for
individual securities in the mean-variance optimization to
form the optimal portfolio, it is not necessary and perhaps
overreaching to assume returns of individual securities fol-
low the prescription of the risk model. Instead of such a
normative approach, we take a descriptive one, making
no explicit assumptions about the expected return of each
security.

3 Later in the paper, we will use the time series standard
deviation as well. To avoid confusion we shall use disper-
sion when describing cross-sectional standard deviation and
standard deviation when describing time series standard
deviation.

4 It is difficult to maintain a constant level of risk-model
tracking error for all time. One often targets it within a

narrow range to accommodate portfolio drift and changing
risk model estimates.

5 The variance of N such independent variables is a scaled
chi-square distribution if their mean is zero. It can be proven
that when N is large, the dispersion is close to unity, using
the approximation of a chi-square distribution (Keeping,
1995).
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