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ON THE FINANCIAL INTERPRETATION OF RISK CONTRIBUTION:
RISK BUDGETS DO ADD UP

Edward Qiana

Due to a lack of clear financial interpretation, there are lingering questions in the financial
industry regarding the concepts of risk contribution. This paper provides as well as ana-
lyzes risk contribution’s financial interpretation that is based on expected contribution to
potential losses of a portfolio. We show risk contribution, defined through either standard
deviation or value at risk (VaR), is closely linked to the expected contribution to the losses.
In addition, for VaR contribution, our use of Cornish–Fisher expansion method provides
practitioners an efficient way to calculate risk contributions of portfolios with non-normal
underlying returns. Empirical evidences are provided with asset allocation portfolios of
stocks and bonds.

Introduction

The concepts of risk contribution1 and percentage
contribution to risk are widely used in both risk
management and risk budgeting practices, in the
areas of asset allocation as well as active portfo-
lio management (Litterman, 1996; Lee and Lam,
2001; Wander et al., 2002; Winkelmann, 2004).
For instance, it is a cornerstone of portable alpha
strategy (Arnott, 2002; Kung and Pohlman, 2004).
Despite their ubiquitous presence, however, ques-
tions have remained regarding their validity, due to
both the simple belief that risks are non-additive and
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a lack of financial intuition behind mathematical
definitions of these concepts. For instance, Sharpe
(2002) correctly argues that a mere mathematical
decomposition of risk does not necessarily qual-
ify as risk contribution. The argument is sensible
because, risk contribution is often defined, with
little economic justification, through a calculation
involving marginal contribution to risk—partial
derivative of risk with respect to underlying security
weights. Sharpe (2002) further suggests rejecting
the concept of risk contribution altogether, based
on the fact that, risk in terms of either standard
deviation or value at risk (VaR), is non-additive.
Chow and Kritzman (2001) express a similar critical
view toward risk budgeting while emphasizing the
usefulness of marginal contribution to VaR because
of its clear financial interpretation.
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The primary reason for such lingering doubts might
be due to the fact that, the financial industry as a
whole, has yet come to a firm grasp of its finan-
cial interpretation beyond the initial mathematical
definition. For example, Grinold and Kahn (2000)
interpret it as “relative marginal contribution to
risk.” However, their interpretation is simply a
recast of the definition for marginal contribution
to risk. Earlier, Litterman (1996) also interpret risk
contribution in terms of marginal analysis.

Does risk contribution have an independent, intu-
itive financial interpretation? Do risk budgets add
up to 100%? These questions are important to all
investment professionals who must consider risk
as one of the dimensions in investment decision-
making process. In this paper we answer these
questions by providing an intuitive financial inter-
pretation for the risk contribution. We shall present
analytic results, empirical examples, and relate to
most recent academic research by others on this
important topic.

1 Loss contribution and loss budgets

We arrive at the interpretation by considering loss
contribution and percentage contribution to loss.
One of the common pressing questions facing port-
folio managers is: In the event of a sizable loss to a
portfolio, what are the likely contributions to the
loss from the portfolio’s underlying components?
The answer turns out to be strongly consistent with
the risk contribution as currently defined.

The answer is given by conditional expectations of
underlying securities returns, given the total port-
folio return equal to the loss. We first assume all
security returns are normally distributed and use
standard deviation as the risk measure. Later in the
paper, we use more general risk measure VaR when
the normality assumption is relaxed.

1.1 Conditional expectation with normal
distribution

For simplicity, we work with an existing portfolio
consisted of just two securities, with weights w1 and
w2 respectively. We also assume their return volatil-
ities σ1, σ2 and correlation ρ. Then the standard
deviation of the portfolio return is

σ =
√

w2
1σ2

1 + w2
2σ2

2 + 2ρw1w2σ1σ2 (1)

The percentage contribution to risk2 is given as the
weight times the marginal contribution to risk times
the marginal contribution to risk, divided by the
standard deviation

p1 =
(

w1
∂σ

∂w1

) /
σ = w2

1σ2
1 + ρw1w2σ1σ2

σ2

p2 =
(

w2
∂σ

∂w2

) /
σ = w2

2σ2
2 + ρw1w2σ1σ2

σ2

(2)

Note the sum of percentage contribution to risk
is unity, i.e., p1 + p2 = 1. Also note the per-
centage contribution is zero if the weight is zero,
i.e., pi = 0 when wi = 0. As a matter of fact,
Eq. (2) gives rise to an alternative interpretation of
the percentage contribution pi—it is the ratio of the
covariance between component return of security i
and the portfolio return, to the total variance of the
portfolio. Therefore, it is the beta of the compo-
nent return versus the portfolio, and naturally the
sum of the betas is unity. This beta-interpretation is
more appealing since it is not necessarily associated
with the marginal contribution. But nevertheless,
it still does not lend itself explicitly to an economic
reason.

To connect the beta-interpretation to an economic
interpretation, we consider the notion of loss con-
tribution. Suppose the portfolio suffered a loss of
size L. What are the expected percentage contribu-
tions to the loss from the two securities? In statistical
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terms, it is ci = E (wiri |w1r1 + w2r2 = L)/L, i =
1, 2, i.e., the expected contribution from the two
securities divided by the loss L. By the theory of con-
ditional distribution3 (see Appendix A for details),
we have

c1 = w1µ1

L
+ p1

(
1 − w1µ1

L
− w2µ2

L

)

= p1 + p2w1µ1 − p1w2µ2

L
�= p1 + D1

L

c2 = w2µ2

L
+ p2

(
1 − w1µ1

L
− w2µ2

L

)

= p2 + p1w2µ2 − p2w1µ1

L
�= p2 + D2

L
(3)

We have assumed the unconditional expected
returns of two securities are µ1 and µ2, respectively.
In the equation, p1 and p2 are percentage contribu-
tions to risk, or beta, as defined in Eq. (2). It is easy
to see the sum of percentage contribution to loss is
also unity, i.e., c1 + c2 = p1 + p2 = 1, since D2 =
−D1. In Eq. (3), we have defined the term D1 and
D2. We shall discuss it at length later in the paper.

Equation (3) shows the expected percentage con-
tributions to loss bear close relationship to the
percentage contributions to risk. In fact, there are
three instances where the two become identical.

1.2 Three special cases

First, if the unconditional expected returns µ1 and
µ2 are both zero, then the loss contributions and
risk contributions are the same, i.e., c1 = p1, c2 =
p2, for any loss L. This case applies to short invest-
ment horizons where we can assume the expected
returns are zero. In practice, much risk management
analyses are indeed focused on short horizons such
as one-day or one-week.

The second case is when one security has zero
weight; therefore its contribution to risk is zero.

This is a trivial case in which the remaining security
accounts for one hundred percent of risk as well as
one hundred percent of loss. However, this loss con-
tribution remains approximately true if the security
weight is small and the loss L is relatively large
compared to the sub-optimality of the portfolio.

The third and more interesting case arises when
D1 = p2w1µ1 − p1w2µ2 = 0, or equivalently

w1µ1

p1
= w2µ2

p2
(4)

Equation (4) is the first order condition of marginal
utility for an optimal mean-variance portfolio.
Therefore, it implies that for optimal portfolios,
percentage contribution to risk is equivalent to
expected percentage contribution to portfolio’s total
expected return. In other words, risk budgets
become the budgets of expected return. Sharpe
(2002) discusses this property at length and he sug-
gests that “risk-budgeting and-monitoring systems,
are best viewed in terms of a budget of implied
expected excess return and deviation from the bud-
get.” However, this equivalency is only true for
mean-variance optimal portfolios. For a real world
portfolio, which might not be optimal in the mean-
variance sense, our interpretation of percentage
contribution to risk still allows managers to estimate
the likely contribution to a given loss.

In fact, an additional benefit of Eq. (3) is it allows us
to estimate the impact of portfolios’ sub-optimality
measured by D′

i s on the percentage contribution
to loss. For instance, if the allocation to secu-
rity 1 is more than the mean-variance optimal
weight, then D1 = p2w1µ1 − p1w2µ2 < 0. This
is because when the weight w1 increases from the
optimal weight, the increase in its risk contribution
dominates its increase in the expected return con-
tribution. Therefore, for a given loss L that carries
a negative sign, the percentage contribution to loss
c1 will be greater than the percentage contribution
to risk p1, because D1/L is positive.
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We further note that, when the loss L far exceeds the
sub-optimality measures, the loss contributions are
approximately the risk contribution, i.e., c1

∼= p1

and c2
∼= p2. This observation is very relevant dur-

ing financial crises when portfolio losses could be
significantly higher than the expected returns. Con-
sequently, loss contribution would be well captured
by risk contribution during the crisis periods. On
the contrary, during quiet periods when portfolio
losses are relatively small, loss contribution, or sim-
ply ex post return attribution, is unlikely to bear any
relationship to risk contribution at all! Therefore,
these small loss events should not be used as reasons
to dismiss the usefulness of risk contribution.

In summary, percentage contribution to risk can be
interpreted as percentage contribution to a given
loss of the total portfolio. The two are identical
when expected returns are zeros or when the port-
folio is mean-variance optimal. In other cases, the
interpretation is appropriate when the given loss is
large compared to the sub-optimality measure D′

i s.

2 Ex post analyses of a balanced portfolio

In this section, we compare our theoretical pre-
dictions with actual results of a balanced portfolio
investing 60% in S&P 500 Index and 40% in
Ibbotson’s Long-term Government Bond Index.
The monthly returns span from January 1926 to
June 2004. Table 1 gives statistics of monthly return

Table 1 Monthly return statistics of indices and the balanced
portfolio.

S&P 500 US LT Gvt 60/40 Portfolio

Avg Return 0.98% 0.46% 0.78%
Stdev 5.61% 2.27% 3.61%
Skewness 0.39 0.66 0.40
Kurtosis 9.58 5.09 7.64
Corr w/S&P 500 1.00 0.14 0.97

indices, as well as returns of the balanced portfolio.
The monthly average returns of stocks and bonds are
0.98% and 0.46% respectively, the monthly stan-
dard deviations are 5.61% and 2.27%, and their
correlation is 0.14. The balanced portfolio has an
average return of 0.78% and a standard deviation of
3.61%. By Eq. (2), the percentage contributions to
risk are 90.3% from stocks and 9.7% from bonds.
Therefore, a typical balanced portfolio might be bal-
anced in terms of capital allocation but it is highly
unbalanced in terms of risk allocation.

Table 1 also shows the higher moments of returns.
While skewness is close to zeros for all three return
series, the excess kurtosis is significantly positive,
which raises question about the normality of the
returns. As a first step, we nevertheless use normality
assumption and standard deviation in our analysis.
Later in the paper we shall take into account of the
higher moments when analyzing VaR contribution.

2.1 Contribution to losses

Table 2 shows the predicted percentage contri-
butions to loss together with the realized values
for the balanced portfolio, for losses above 3%
and in several bins.4 In each bin, we only report
contribution from stocks.5 Since Eq. (3) only gives
the expectation for a point loss, we use the midpoint
of each bin to calculate the predicted percentage
contribution.
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Table 2 Comparison of average and standard deviation of percentage contribution to loss from stocks of
a 60/40 portfolio.

Loss (%) Predicted c1 (%) Realized c1 (%) N Predicted Std (%) Realized Std (%)

−4 to –3 93.5 89.8 45 28.0 26.1
−5 to –4 92.8 92.7 23 21.0 20.7
−6 to –5 92.3 88.1 11 16.8 16.1
−7 to –6 92.0 99.5 9 14.0 18.7
−8 to –7 91.8 90.1 8 12.0 18.6
−19 to –8 91.3 102.4 12 10.5 12.3

As the loss increases, the predicted c1 decreases
from 93.5% to 91.3%, approaching percentage
contribution p1, i.e., 90.3%. For this particular
portfolio, the range of percentage contribution to
loss from stocks is narrow because the portfolio’s
sub-optimality measure D1 is small at −0.11%
compared to the losses under consideration. For this
reason, we could have used the percentage contri-
bution to risk of 90.3% for all the losses considered.
Table 2 shows that on average the predicted value
agrees with the realized percentage contribution to
loss. But it fails to capture the ascending trend of
the realized values. This is especially true for the last
bin where the range of the loss is −19% to −8%,
in which the predicted value is roughly 91% while
the realized value is above 102%. We have made the
range of this bin much wider because there are only a
few historical losses with these sizes—the column N
denotes the number of data points in each bin and
the number becomes smaller as the loss increases.
We can postulate two possible reasons for the poor
accuracy of the predicted c1 at the tail end. One
is we simply don’t have enough data points, which
might also explain the low value of the realized per-
centage contribution to loss in the loss bin from
−8% to −7%. The other is the stock returns have
fat tails. The latter is certainly consistent with the
fact that the realized percentage contribution to loss
from the stocks is higher than the predicted value
based on normality assumption. In the next section,

where we take into account the high moments of the
return distribution, the prediction would indeed
improve.

The last two columns of Table 2 compare the
predicted and realized standard deviations of the
percentage contribution (see Appendix A). When
the losses are capped at −6%, the two values are
quite close. As the losses grow, again, the predicted
values underestimate the realized ones, possibly due
to stocks’ excess kurtosis.

2.2 Variation of the sub-optimality measure for
asset allocation portfolios

For the 60/40 balanced portfolio risk contribution
and loss contribution show little difference because
the sub-optimality measure D1 is small compared
to the return standard deviation. It is worth explor-
ing whether this is true for other asset allocation
portfolios. We thus deviate from our main theme
to study other stock/bond portfolios. Figure 1 plots
the ratio of sub-optimality measure D1 to portfolio’s
return standard deviation σ, versus stock weight in
asset allocation portfolios. There are three points
at which D1 = 0. As we explained above, when
the stock weight is at either 0% or 100%, D1 is
zero. The third point corresponds to the mean-
variance optimal portfolio in which the stock weight
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Figure 1 The value of D1 over standard deviation
for asset allocation portfolios.

is roughly 25%. When the stock weight is between
0% and 25%, D1 is positive but as a percentage of
return volatility is always less then 2%. When the
stock weight is between 25% and 100%, D1 is neg-
ative and the ratio to return volatility varies between
0% and −3%.

Therefore, it is true that D1 is quite small
compared to return standard deviation for all
stock/bond portfolios. We conclude one can sub-
stitute risk contribution for loss contribution with
little error, provided the loss is greater than one
standard deviation. In other words, the financial
interpretation of risk contribution or risk bud-
get is accurately reflected for these asset allocation
portfolios.

3 Percentage contribution to VaR

In this section, we extend the same financial inter-
pretation to VaR contribution. VaR, representing
loss with a given cumulative probability, is a gen-
eral risk measure that can be used for portfolios
with any kind of return distributions. For a port-
folio with normal distribution, VaR is simply
expected return plus a constant multiple of stan-
dard deviation. For a non-normal distribution, a
(1 − α)% VaR is defined through the following

equation

Prob(r ≤ VaR) =
∫ VaR

−∞
p(r)dr = α (5)

where p(r) is the probability density of the return
distribution and α is the cumulative probability of
loss, typically set at 5% or 1%.

3.1 Contribution to losses

We address two questions regarding VaR. First, can
we define percentage contribution to risk in terms
of VaR? If we can, the follow-up question is can
we extend the same financial interpretation to the
percentage contribution to VaR?

The answer to both questions is yes. First, because
VaR is a linear homogeneous function of weights
(Litterman, 1996; Hallerbach, 2003), it is mathe-
matically true that

VaR =
N∑

i=1

wi
∂VaR

∂wi
(6)

Therefore one can define VaR contributions as
weights time marginal contribution to VaR, which
is sometimes referred to as component VaR. Divid-
ing Eq. (6) by VaR leads to percentage contribution
to VaR, or VaR-beta. Regarding the second ques-
tion, Hallerbach (2002) gave an elegant proof that
the VaR contribution given by Eq. (6) is exactly the
expected contribution to a loss whose size equals to
VaR (in Appendix B we give an alternative proof ).
Thus, VaR contribution can be interpreted as loss
contribution.

While contributions to risk in terms of both stan-
dard deviation and VaR have the same financial
interpretation, there are several subtle differences.
First, in the case of standard deviation under nor-
mality assumption, percentage contributions to risk
are independent of losses. We have shown under
some circumstances, they approximate loss contri-
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butions with sufficient accuracy regardless of the
loss size. However, the interpretation of contribu-
tion to VaR is rather restrictive—it only applies
to the loss that exactly equals specific VaR. VaR
contributions change when VaR changes, i.e., they
are different for 1% and 5% VaR. Therefore, for
losses of different sizes, one must recalculate its VaR
contribution. The second difference is their compu-
tational complexity. Whilst risk contribution based
on standard deviation is easy to calculate, it is a
daunting task to calculate risk contribution to VaR
because analytic expressions are rarely available for
VaR as a function of weights. Even when there is
an analytic expression, calculating its partial deriva-
tive with respect to weights can be quite challenging
(Chow and Kritzman, 2001; Chow et al., 2001). In
most instances, one has to resort to Monte Carlo
simulations to obtain VaR decomposition as well as
VaR itself. Fortunately, there exist analytic approxi-
mations to VaR based on moments of the return
distribution, which in turn can also be used to
estimate VaR contribution.

3.2 Analytic approximation to VaR decomposition

One such VaR approximation is based on Cornish–
Fisher expansion (Mina and Ulmer, 1999). It retains
the form of the mean plus a z score times the
standard deviation

VaR = µ + z̃ασ (7)

But the z-score z̃α incorporates the normal z-score
zα and correction terms of higher moments

z̃α ≈ zα + 1

6

(
z 2

α − 1
)

s + 1

24

(
z 3

α − 3zα

)
k

− 1

36

(
2z 3

α − 5zα

)
s2 (8)

Equation (8) gives an approximation of the α-
percentile of a distribution with mean µ, standard
deviation σ, skewness s, and excess kurtosis k. Sub-
stituting it into Eq. (7) yields the (1 − α)% VaR.

As a numerical example, we calculate the 99%
VaR of the 60/40 balanced portfolio using the two
equations and inputs from Table 1. For the 99%
VaR, we choose α = 0.01 and then zα = −2.33,
and from Eq. (8) we obtain z̃α = −3.81. Sub-
stituting it into Eq. (7) yields −12.96% for the
99% VaR. As a comparison, the 99% VaR without
considering the higher moments is only −7.62%.
Therefore the excess kurtosis of the return dis-
tribution dramatically increases the VaR at 99%
level.

Previous researches (Mina and Ulmer, 1999;
Jaschke, 2002) have shown that the Cornish–Fisher
approximation provides an efficient and sufficiently
accurate way to obtain VaR. To our knowledge,
we are the first to use it as a way to approximate
VaR decomposition analytically. The calculation
is straightforward but laborious. VaR given by
Eqs. (7) and (8) is an algebraic function of secu-
rity weights—the mean is a linear function of
weights, the standard deviation is the square root of
a quadratic function of weights, the skewness and
the kurtosis involve respectively third and fourth
order polynomials of weights, with coefficients
being third and fourth order co-moments between
securities. For a given portfolio with multiple secu-
rities, once we have estimated the covariances and
the higher order co-moments, for example, based
on historical returns, Eq. (7) becomes an explicit
but cumbersome function of the security weights.
We can then derive analytically its partial deriva-
tives with respect to weights and contributions to
VaR. Details are omitted but are available upon
request.

We present percentage contribution to VaR for
our balanced portfolio in Table 3. As seen from
Table 1, the skewness of the portfolio is only slightly
positive,6 but the excess kurtosis is significantly
positive. Table 3 reports the percentage contribu-
tions to different values of VaR. These values are
chosen to coincide with the midpoints of loss ranges
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Table 3 Predicted percentage contribution to VaR compared to prediction
based on normal distribution and realized percentage contribution to losses.

Loss (%) Predicted VaR (%) Predicted c1 (%) Realized c1 (%)

−3.50 84.90 93.5 89.8
−4.50 90.50 92.8 92.7
−5.50 94.20 92.3 88.1
−6.50 97.10 92.0 99.5
−7.50 99.20 91.8 90.1
−8.50 100.90 91.3 102.4

in Table 2, so that we can compare the results
directly with the predictions made under normality
assumption and the realized values.

We make a few observations about the results.
First, the predicted contribution from stocks to
VaR increases as VaR increases, consistent with the
general trend in the realized contribution to VaR.
We have expected this because the stock returns
have a higher kurtosis than the bond returns. In
contrast, the prediction based on standard devia-
tion decreases, albeit slightly, as the loss increases.
For this reason, the VaR approach offers a better
risk contribution analysis when the loss is large,
above two standard deviations in this case. Sec-
ond, when the loss is between one and two standard
deviations, the standard deviation approach is com-
petitive, possibly because in this range the effect of
high kurtosis has yet been felt. Third, we note that
while theVaR approach offers a better estimation for
the expected contribution to loss, it does not pro-
vide a measure for the standard error, which, on the
other hand, is readily available for risk contribution
with standard deviation.

4 Conclusion

Both theoretical proof and empirical evidence
show that risk contribution has a sound economic
interpretation—expected contribution to potential

losses of a portfolio. When the underlying return
distributions are normal, risk contribution in terms
of standard deviation is easy to calculate and often
depict adequately the loss contribution. Further-
more, it provides error estimation for the loss
contribution. Risk contribution in terms of VaR,
on the other hand, is precise in theory, but hard to
compute in practice. We show that the commonly-
used Cornish–Fisher expansion method for VaR
approximation can also be employed to estimate
VaR contribution.

When both approaches are applied to the balanced
portfolio, we obtain predictions that are in general
agreement with the actual results. While the stan-
dard deviation approach is adequate when the loss
is confined to two standard deviations, the VaR
approach proves to be more accurate in the extreme
tail since it accounts for the effect of higher
moments.

In addition to risk management, our results have
important implications to risk budgeting practice.
First and foremost, risk budgets do add up. Second,
risk budget for the same portfolio will look different
depending which approach is used. In case of stan-
dard deviation approach, the budget could just be
percentage contribution to risk since in many situ-
ations, the size of the loss does not alter the budget
a great deal. But, in case of VaR approach, the bud-
get picture depends on the percentile of VaR. A

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2006



FINANCIAL INTERPRETATION OF RISK CONTRIBUTION 49

95% VaR and 99% VaR could lead to very differ-
ent risk budgets. Therefore, selecting a combination
of portfolio VaR and its associated VaR contribu-
tions becomes an integrated task of risk budgeting
exercise.

Finally, it is worth pointing out the Cornish–Fisher
expansion method should very useful for obtaining
VaR contribution for other types of asset allocation
portfolios, especially those including hedge funds,
whose returns could have significant skewness and
kurtosis. Risk budget without considering these
high moments could seriously underestimate the
risk in the hedge funds. The Cornish–Fisher expan-
sion method provides an efficient way to tackle this
problem.
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Appendix A. Conditional expectation and
conditional variance

In this appendix we present general results concern-
ing percentage contribution to loss of a portfolio
with N assets, whose joint return distributions are
normal. The results include both conditional expec-
tations and conditional variances. The case with two
assets in the main text is a specific example.

We denote the joint return as a multivariate
normal distribution, i.e., r ∼ N (µ, �). In
the distribution, r = (r1, r2, . . . , rN )′ represents
the random return vector, µ = (µ1, µ2, . . . , µN )
represents the means, and � = (σij)N

i,j=1 =
(ρijσiσj)N

i,j=1 is the covariance matrix. We specify
the portfolio weights as w = (w1, w2, . . . , wN )′,
and the loss as L. Furthermore, we denote the

portfolio return by R = w′ · r and its mean
by µR = w′ · µ. Then the expected percentage
contribution to the loss is

ci = E(wiri |R = L)

L

= wiµi

L
+ cov(wiri , R)

var(R)

(
1 − µR

L

)

= pi + wiµi − piµR

L
�= pi + Di

L
(A.1)

In the equation, pi is percentage contribution to
risk from security i, the same as the beta of its com-
ponent return versus the portfolio return. Several
remarks can be made regarding the result. First,
when the means are all zero, the expected contribu-
tions to loss are always identical to risk contribution
pi , regardless of the size of the loss. Second, this
is also true for non-zero means if the portfolio is
mean-variance optimal, i.e., if

w1µ1

p1
= w2µ2

p2
= · · · = wN µN

pN
(A.2)

The portfolio’s sub-optimality can be measured by
the constants D′

i s. And when they are small com-
pared to the loss, the contribution to the loss is
approximated by risk contribution pi .

Using conditional distribution of normal variables,
we also obtain the conditional standard deviation
of percentage contribution to loss. We have

si = std(wiri |R = L)

L
=

√
w2

i σ2
i − p2

i σ
2

L
(A.3)

The numerator is the square root of the conditional
variance of the return component from security i,
which equals the unconditional variance minus beta
squared times the variance of the total portfolio.
As the loss L increases, the conditional standard
deviation thus decreases as 1 over L.

FOURTH QUARTER 2006 JOURNAL OF INVESTMENT MANAGEMENT



50 EDWARD QIAN

For a portfolio with two securities, the two condi-
tional standard deviations are the same

si = |w1w2|σ1σ2
√

1 − ρ2

σL
, i = 1, 2 (A.4)

Equation (A.4) is used to derive the results in
Table 2.

Appendix B. VaR decomposition

In this appendix, we show contribution to risk
in terms of VaR has the same financial interpre-
tation as expected contribution to loss. The VaR
decomposition is defined through the following
identity

VaR =
N∑

i=1

wi
∂VaR

∂wi
(B.1)

Equation (B.1) holds true because VaR is a linear
homogeneous function of weights. The VaR contri-
bution or VaR decomposition is thus weight times
the partial derivative of VaR with respect to the
weight.

There are at least two ways to arrive at the financial
interpretation. First, Hallerbach (2002) realizes that
VaR, when considered as a portfolio return, can
be written as a sum of conditional expectations of
component returns

VaR =
N∑

i=1

wiE(ri |w′ · r = VaR) (B.2)

Comparing Eqs (B.1) and (B.2) leads to

ci = E(wiri |w′ · r = VaR)

VaR
= wi

∂VaR
∂wi

VaR
(B.3)

Equation (B.3) is the interpretation we have sought
after—percentage contribution to VaR equals per-
centage contribution to a loss of the size given
by VaR.

We next prove this result by a direct paramet-
ric approach. Without loss of generality, we again
assume a portfolio of two securities, whose returns
have a joint probability distribution f (r1, r2) of
rather arbitrary form. Then the cumulative prob-
ability of the portfolio return R = w1r1 + w2r2

being less than VaR is

Prob(R ≤ VaR)

=
∫ ∞

−∞
dr1

∫ (VaR−w1r1)/w2

−∞
f (r1, r2)dr2 = α.

(B.4)

Equation (B.4) defines the (1 − α)% VaR as an
implicit function of weights w1, w2. To obtain
the partial derivative of VaR with respect to
weights, we differentiate both sides of Eq. (B.4)
with respect to w1. We have

∫ ∞

−∞
f

(
r1,

VaR − w1r1

w2

)
1

w2

×
(

∂VaR

∂w1
− r1

)
dr1 = 0. (B.5)

Therefore

w1
∂VaR

∂w1
=

1
w2

∫ ∞
−∞ w1r1f

(
r1, VaR − w1r1

w2

)
dr1

1
w2

∫ ∞
−∞ f

(
r1, VaR − w1r1

w2

)
dr1

(B.6)
The right hand side of this equation can be recog-
nized exactly as the conditional expectation of w1r1

given the portfolio return R = w1r1+w2r2 = VaR.
Thus, it established the financial interpretation for
the VaR contribution.

Notes

1 Risk contribution is often also called risk decomposition,
or risk budget, among other names. Dividing the risk con-
tribution by the total risk yields relative contribution or
percentage contribution to risk. These are definitions we
adhere to in this paper.
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2 From this point on, we will only consider the percent-
age contribution, because the two measures are linearly
dependent.

3 The conditional expectation of a normal variable equals to
the unconditional mean plus its beta to the given variable,
in this case, the total portfolio return, times the difference
between the given variable and its unconditional mean.

4 We consider losses of the size close to and beyond the
standard deviation of the portfolio.

5 Since the two percentage contributions add up to 100%, the
bond contributions are omitted. Furthermore, the standard
deviation of bonds’ contribution equals to that of stocks.

6 For this reason, the last term in Eq. (8) is negligible thus is
omitted from our calculation.
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